Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cotton, additives

The LCA results of cradle-to-grave analysis from raw material extraction to discarded textiles revealed that the textiles made out of acryl and PET have the least impact on the environment, followed by elastane, nylon and cotton. Additionally, it was also found out from this study that the use phase has less relative impact than is suggested in the classical literature (van der Velden et al., 2014). There were many other conclusions, which will not be discussed here. [Pg.280]

Williams, J., 1999, Cotton additive kills pathogenic microbes. Technical Textiles International, October, pp. 9. [Pg.418]

Fit a 500 ml. round-bottomed flask with a dropping funnel and a double surface condenser alternatively, the flask may be provided with a two-way addition tube (Fig. II, 13, 9) and the dropping funnel and condenser inserted into the latter. Place 37 g. (46 ml.) of iso-butyl alcohol (b.p. 106-108°) and 40 g. (41 ml.) of pure pyridine in the flask and 119 g. (73 ml.) of redistilled thionyl chloride in the dropping funnel. Insert a cotton wool or calcium chloride guard tube into the mouth of the funnel. Introduce the thionyl chloride during 3-4 hours a white solid... [Pg.274]

It is recommended that the reader become familiar with the point-group symmetry tools developed in Appendix E before proceeding with this section. In particular, it is important to know how to label atomic orbitals as well as the various hybrids that can be formed from them according to the irreducible representations of the molecule s point group and how to construct symmetry adapted combinations of atomic, hybrid, and molecular orbitals using projection operator methods. If additional material on group theory is needed. Cotton s book on this subject is very good and provides many excellent chemical applications. [Pg.149]

It is assumed that the reader has previously learned, in undergraduate inorganie or physieal ehemistry elasses, how symmetry arises in moleeular shapes and struetures and what symmetry elements are (e.g., planes, axes of rotation, eenters of inversion, ete.). For the reader who feels, after reading this appendix, that additional baekground is needed, the texts by Cotton and EWK, as well as most physieal ehemistry texts ean be eonsulted. We review and teaeh here only that material that is of direet applieation to symmetry analysis of moleeular orbitals and vibrations and rotations of moleeules. We use a speeifie example, the ammonia moleeule, to introduee and illustrate the important aspeets of point group symmetry. [Pg.582]

Bis(azol-2-5l)stilbenes (2(i]ll such as (4) have been prepared. 4,4 -Dihydrazinostilbene-2,2 -disulfonic acid, obtained from the diamino compound, on treatment with 2 moles of oximinoacetophenone and subsequent ring closure, leads to the formation of (4) [23743-28 ]. Such compounds are used chiefly as washing powder additives for the brightening of cotton fabrics, and exhibit excellent light- and hypochlorite-stabiUty. [Pg.115]

Dimethipin. 2,3-Dihydro-5,6-dimethyl-l,4-dithiin-l,l,4,4-tetraoxide [55290-64-7] (dimethipin, oxidimetbiin, UBI-N252, Harvard) (25) is used as a cotton defoHant and has been used as an experimental desiccant in potato vines. In addition, it defoHates nursery stock, grapes, dry beans, and natural mbber and is used as a desiccant for seed of canola, flax (l lnum usitatlssimum), rice, and sunflower (He/lanthus annuus) (10). The product has been available since the mid-1970s and the experimental work was first reported in 1974 (44). [Pg.424]

In the calendering method, a PVC compound which contains plasticizers (qv) (60—120 phr), pigments (qv) (0—10 phr), fillers (qv) (20—60 phr), stabilizers (10—30 phr), and other additives, is kneaded with calender roUs at 150—200°C, followed by extmsion between clearance-adjusted roUs for bonding onto the substrate. This method is employed for products with thick PVC layers, ie, of 0.05—0.75 mm thickness. The main plasticizer used is di-2-ethylhexyl phthalate (DOP). For filler to reduce cost, calcium carbonate is mainly used. A woven or knit fabric made of cotton, rayon, nylon, polyester, and their blend fiber is used as substrate. For foamed vinyl-coated fabrics, the bonded materials are heated in an oven to decompose the foam-blowing... [Pg.92]

Textile Flame Retardants. The first known commercial appHcation for phosphine derivatives was as a durable textile flame retardant for cotton and cotton—polyester blends. The compounds are tetrakis(hydroxymethyl)phosphonium salts (10) which are prepared by the acid-cataly2ed addition of phosphine to formaldehyde. The reaction proceeds ia two stages. Initially, the iatermediate tris(hydroxymethyl)phosphine [2767-80-8] is formed. [Pg.319]

Phthalocyanine Dyes. In addition to their use as pigments, the phthalocyanines have found widespread appHcation as dyestuffs, eg, direct and reactive dyes, water-soluble dyes with physical or chemical binding, solvent-soluble dyes with physical or chemical binding, a2o reactive dyes, a2o nonreactive dyes, sulfur dyes, and wet dyes. The first phthalocyanine dyes were used in the early 1930s to dye textiles like cotton (qv). The water-soluble forms Hke sodium salts of copper phthalocyanine disulfonic acid. Direct Blue 86 [1330-38-7] (Cl 74180), Direct Blue 87 [1330-39-8] (Cl 74200), Acid Blue 249 [36485-85-5] (Cl 74220), and their derivatives are used to dye natural and synthetic textiles (qv), paper, and leather (qv). The sodium salt of cobalt phthalocyanine, ie. Vat Blue 29 [1328-50-3] (Cl 74140) is mostly appHed to ceUulose fibers (qv). [Pg.506]

The solution (pad bath) contains one or more of the amino resias described above, a catalyst, and other additives such as a softener, a stiffening agent, or a water repeUant. The catalyst may be an ammonium or metal salt, eg, magnesium chloride or ziac nitrate. Synthetic fabrics, such as nylon or polyester, are treated with amino resias to obtaia a stiff finish. Cotton (qv) or rayon fabrics or blends with synthetic fibers are treated with amino resias to obtain shrinkage control and a durable-press finish. [Pg.331]

Several factors were utilized in bringing formaldehyde release down. In particular, resin manufacturer executed more careful control of variables such as pH, formaldehyde content, and control of methylolation. There has also been a progressive decrease in the resin content of pad baths. The common practice of applying the same level of resin to a 50% cotton—50% polyester fabric as to a 100% cotton fabric was demonstrated to be unnecessary and counter productive (89). Smooth-dry performance can be enhanced by using additives such as polyacrylates, polyurethanes, or siUcones without affecting formaldehyde release. [Pg.446]


See other pages where Cotton, additives is mentioned: [Pg.265]    [Pg.265]    [Pg.146]    [Pg.289]    [Pg.391]    [Pg.257]    [Pg.291]    [Pg.358]    [Pg.368]    [Pg.389]    [Pg.732]    [Pg.863]    [Pg.962]    [Pg.963]    [Pg.1002]    [Pg.225]    [Pg.398]    [Pg.405]    [Pg.13]    [Pg.180]    [Pg.233]    [Pg.284]    [Pg.479]    [Pg.490]    [Pg.202]    [Pg.252]    [Pg.451]    [Pg.149]    [Pg.149]    [Pg.68]    [Pg.186]    [Pg.113]    [Pg.49]    [Pg.162]    [Pg.170]    [Pg.256]    [Pg.273]    [Pg.440]    [Pg.448]   


SEARCH



© 2024 chempedia.info