Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion service environments

Industry has learned that the high cost of corrosion in manufacturing can be reduced significantly using well-designed and well-applied RPs. There are a number of factors that have a marked influence on the service life of RP equipment that is used in corrosion service environments. These are ... [Pg.20]

While metallic repair clamps have been demonstrated to be effective, there are several drawbacks associated with their use. Firstly, highly corrosive service environments make these metallic repairs susceptible to degradation over time. Secondly, metallic repairs are typically heavy, thus requiring special infrastructure for installation, and sometimes additional pipe supports are necessary after installation. [Pg.238]

One of the principal reasons for failure due to reaction with the service environment is the relatively complex nature of the reactions involved. Y"et, in spite of all the complex corrosion jargon, whether a metal corrodes depends on the simple elec trochemical cell set up by the environment. This might give the erroneous impression that it is possible to calculate such things as the corrosion rate of a car fender in the spring mush of salted city streets. Dr. M. Pourbaix has done some excellent work in the application of thermodynamics to corrosion, but this cannot yet be applied direc tly to the average complex situation. [Pg.2417]

Choices of alternative materials. Corrosion probes are carefully chosen to be as close as possible to the alloy composition, heat treatment, and stress condition of the material that is being monitored. Care must be taken to ensure that the environment at the probe matches the service environment. Choices of other alloys or heat treatments and other conditions must be made by comparison. Laboratory testing or coupon testing in the process stream can be used to examine alternatives to the current material, but the probes and the monitors can only provide information about the conditions which are present during the test exposure and cannot extrapolate beyond those conditions. [Pg.2441]

Substituting one alloy for another may be the only viable solution to a specific corrosion problem. However, caution should be exercised this is especially true in a cooling water environment containing deposits. Concentration cell corrosion is insidious. Corrosion-resistant materials in oxidizing environments such as stainless steels can be severely pitted when surfaces are shielded by deposits. Each deposit is unique, and nature can be perverse. Thus, replacement materials ideally should be tested in the specific service environment before substitution is accepted. [Pg.85]

Uniform corrosion is the deterioration of a metal surface that occurs uniformly across the material. It occurs primarily when the surface is in contact with an aqueous environment, which results in a chemical reaction between the metal and the service environment. Since this form of corrosion results in a relatively uniform degradation of apparatus material, it can be accounted for most readily at the time the equipment is designed, either by proper material selection, special coatings or linings, or increased wall thicknesses. [Pg.13]

Materials evaluation should be based only on actual data obtained at conditions as close as possible to intended operating environments. Prediction of a material s performance is most accurate when standard corrosion testing is done in the actual service environment. Often it is extremely difficult in laboratory testing to expose a material to all of the impurities that the apparatus actually will contact. In addition, not all operating characteristics are readily simulated in laboratory testing. Nevertheless, there are standard laboratory practices that enable engineering estimates of the corrosion resistance of materials to be evaluated. [Pg.18]

Environmental composition is one of the most critical factors to consider. It is necessary to simulate as closely as possible all constituents of the service environment in their proper concentrations. Sufficient amounts of corrosive media, as well as contact time, must be provided for test samples to obtain information representative of material properties degradation. If an insufficient volume of corrosive media is exposed to the construction material, corrosion will subside prematurely. [Pg.18]

For galvanic corrosion tests it is important to maintain the same ratio of anode to cathode in the test sample as in the service environment. [Pg.19]

Thorough assessment of the service environment and a review of options for corrosion control must be made. In severe, humid environments it is sometimes more economical to use a relatively cheap structural material and apply additional protection, rather than use costly corrosion-resistant ones. In relatively dry environments many materials can be used without special protection, even when pollutants are present. [Pg.20]

For service environments in which erosion is anticipated, the wall thickness of the apparatus should be increased. This thickness allowance should secure that various types of corrosion or erosion do not reduce the apparatus wall thickness below that required for mechanical stability of the operation. Where thickness allowance cannot be provided, a proportionally more resistant material should be selected. [Pg.21]

One of the most effective methods of preventing corrosion is the selection of the proper metal or alloy for a particular corrosive service. Once the conditions of service and environment have been determined that the equipment must withstand, there are several materials available commercially that can be selected to perform an effective service in a compatible environment. Some of the major problems arise from popular misconceptions for example, the use of stainless steel. Stainless steel is not stainless and is not the most corrosion-resistant material. Compatibility of material with service environment is therefore essential. For example, in a hydrogen sulfide environment, high-strength alloys (i.e., yield strength above 90,000 psi or Rc 20 to 22) should be avoided. In material selection some factors that are important to consider are material s physical and chemical properties, economics and availability. [Pg.1323]

The first source of information for the behavior of a material in the proposed service environment is the potential supplier of the item of plant. Except for new (or significantly modified) processes, specialist suppliers or fabricators have relevant information and service experience. The supplier should be provided with all process or environmental details that are of possible relevant to corrosion. The most important are listed below ... [Pg.897]

Vast amounts of continuously galvanised steel sheets are produced, and unless they are painted or otherwise coated, their life depends on the thickness of the galvanising and the service environment in which they are used. Similarly in the case of steel sheets coated with aluminium or aluminium-zinc alloys, their performance is dictated by their coating thickness (see Section 13.4). A problem often associated with such material is corrosion at the cut edges. From work carried out by BISRA and others it has been shown that providing the bare steel edge is less than 3 mm in width, the amount of corrosion is minimal and the life of the sheet is not adversely... [Pg.47]

The use of electrodeposited metals to protect corrodible basis metals from their service environments has been well established for many years and accounts for by far the larger part of the activities of the plating industry. There are many reasons for using an electroplated metal finish in preference to an organic finish or to making the articles concerned from inherently corrosion-resistant materials. [Pg.316]

Physical properties The corrosion resistance of an electrodeposit depends not only on suitability for the service environment, thickness, and uniformity, but also on its physical and mechanical qualities such as adhesion to... [Pg.320]

Because of the many variables which can influence the corrosion reaction, the use of the e.m.f. series of metals to predict the behaviour of galvanic couples in a given service environment can be hazardous and misleading. Numerous examples of coatings expected to act cathodically which have, in fact, been anodic have been reported in the literature and specialised lists of galvanic couples in different environments have been compiled. ... [Pg.451]

Metallic corrosion is an electrochemical process associated with the flow of current between surface sites having a difference in electrochemical potential. The assessment and evaluation of organic coatings to prevent metal corrosion has traditionally been accomplished through salt fog testing (ASTM B-117) and long term exposure tests in particular service environments. Electrochemical techniques have often been considered (, but are not routinely employed in practice. [Pg.48]

Predictions of the corrosion performance should be obtained from published data and through testing.The essential requirements of accelerated testing are that the acceleration should produce the same mode of failure and reflect at least a known order of resistance of some alloys in service media.168 The most common approaches employed to achieve testing objectives in SCC are the use of high stresses, slow continuous straining, precracked specimens, higher concentration of species in the test environment than in the service environment, increased temperature, and electrochemical stimulation.169 For electrochemical corrosion, the properties of the medium at the interface should be considered in accelerated tests. [Pg.451]

Corrosion is an electrochemical process and corrosion processes follow the basic laws of thermodynamics. Under controlled conditions, corrosion can be measured, repeated, and predicted. However, because corrosion takes place on an atomic level, corrosion can take place in an accelerated localized fashion, appear as uniform visible attack, or result in subsurface microscopical damage. Normal service environments can rapidly complicate these processes and mechanisms with such variables as pH, temperature, stress, surface finish, flow rates, etc. With the wide range of variables that can come into play, it should not be surprising that corrosion appears to be unpredictable at times. [Pg.782]


See other pages where Corrosion service environments is mentioned: [Pg.355]    [Pg.223]    [Pg.442]    [Pg.14]    [Pg.14]    [Pg.904]    [Pg.1191]    [Pg.529]    [Pg.1112]    [Pg.6]    [Pg.14]    [Pg.14]    [Pg.255]    [Pg.163]    [Pg.347]    [Pg.90]    [Pg.98]    [Pg.69]    [Pg.222]   


SEARCH



Corrosion corrosive environment

Corrosion environments

Service Environment

© 2024 chempedia.info