Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion rate continued metals

Refining and Isomerization. Whatever chlorination process is used, the cmde product is separated by distillation. In successive steps, residual butadiene is stripped for recycle, impurities boiling between butadiene (—5° C) and 3,4-dichloto-l-butene [760-23-6] (123°C) are separated and discarded, the 3,4 isomer is produced, and 1,4 isomers (140—150°C) are separated from higher boiling by-products. Distillation is typically carried out continuously at reduced pressure in corrosion-resistant columns. Ferrous materials are avoided because of catalytic effects of dissolved metal as well as unacceptable corrosion rates. Nickel is satisfactory as long as the process streams are kept extremely dry. [Pg.38]

If the amount of metal removal by erosion is significant the surface will probably be continually active. Metal loss will be the additive effect of erosion and active corrosion. Sometimes the erosion rate is higher than that of active corrosion. The material selection judgment can then disregard coirosion and proceed on the basis of erosion resistance provided the corrosion rates of aetive surfaces of the alloys considered are not much different. As an example of magnitudes, a good high-chromium iron may lose metal from erosion only a tenth as fast as do the usual stainless steels. [Pg.270]

Figure 1.62b shows the result of raising the potential of a corroding metal. As the potential is raised above B, the current/potential relationship is defined by the line BD, the continuation of the local cell anodic polarisation curve, AB. The corrosion rate of an anodically polarised metal can very seldom be related quantitatively by Faraday s law to the external current flowing, Instead, the measured corrosion rate will usually exceed... [Pg.214]

From what has been said already, it is clear that determinations of corrosion rates from small-scale experiments must be treated with great caution. If the metal cannot ptissivate, it will corrode until it becomes immune, at which point the corrosion rate will fall to zero between initial exposure and the attainment of immunity the corrosion rate will be continually changing. If, on the other hand, it is impossible for the metal to come to equilibrium... [Pg.440]

Polarization resistance (Rp) techniques can be used to continuously monitor the instantaneous corrosion rate of a metal. Mansfeld provided a thorough review of the use of the polarization resistance technique for the measurement of corrosion currents. R is defined as ... [Pg.209]

Corrosion of the glass-making melters must be maintained at an absolute minimum to increase the lifespan of the melter. Laboratory-measured corrosion rates indicate that melter lifetimes of several years can be achieved with high chrome oxide or zircon refractories metallic melters may have lifetimes of several months if alloys such as Inconel 690 are used. These conclusions have been reached on the basis of extrapolation of laboratory tests. Long-term tests, particularly with waste glasses in engineering-scale continuous melters, have not yet been made. [Pg.99]

The RH in most indoor environments is usually not above 70 percent and, thus, the CRH of most common metals is seldom exceeded. The time-of-wetness will be quite small. The corrosion rate is likely to be comparable to the outdoor rate (at similar contaminant levels) when the surfaces are dry. Such rates are insignificant compared to the wet rates for most metals (18). In many cases, the anions associated with deposited substances may play the dominant role in surface processes (24). The concentrations of sulfate, nitrate, and chloride, which accumulate on these surfaces, are likely to increase continuously. After 10 years exposure, total anion concentrations of five to ten /ng/cm can be expected in urban environments. These anions, especially chloride, are well known to dramatically affect the corrosion rates of many metals in aqueous solutions. This acceleration is often a result of solubilization of the surface metal oxide through complexation of the metal by the anions. Chloride, in particular, can dramatically lower the RH above which a moisture film is present on the surface, since chloride salts often have low CRHs (e.g., zinc chloride - < 10 percent calcium chloride - 30 percent and aluminum chloride - 40 percent). The combination of the low CRHs of chloride salts and the well documented ability of dissolved chloride to break down metal oxide passivation set chloride apart from the other common anions in ability to corrode indoor metal surfaces. Some nitrate salts also have moderately low CRHs (e.g., zinc nitrate -38 percent calcium nitrate - 49 percent aluminum nitrate - 60 percent). [Pg.222]

In contrast to the above, precipitates that adhere to the metal surface as continuous, nonporous films greatly reduce corrosion rates because the controlling mechanism becomes the slow solid-state diffusion of ions through the films. Further, if the film is a poor conductor of electrons, then the oxidation (corrosion) reaction is retarded because electrons have difficulty reaching the solution interface to enter into the cathodic reaction. [Pg.19]

The concepts in Chapters 2 and 3 are used in Chapter 4 to discuss the corrosion of so-called active metals. Chapter 5 continues with application to active/passive type alloys. Initial emphasis in Chapter 4 is placed on how the coupling of cathodic and anodic reactions establishes a mixed electrode or surface of corrosion cells. Emphasis is placed on how the corrosion rate is established by the kinetic parameters associated with both the anodic and cathodic reactions and by the physical variables such as anode/cathode area ratios, surface films, and fluid velocity. Polarization curves are used extensively to show how these variables determine the corrosion current density and corrosion potential and, conversely, to show how electrochemical measurements can provide information on the nature of a given corroding system. Polarization curves are also used to illustrate how corrosion rates are influenced by inhibitors, galvanic coupling, and external currents. [Pg.492]


See other pages where Corrosion rate continued metals is mentioned: [Pg.13]    [Pg.32]    [Pg.425]    [Pg.58]    [Pg.59]    [Pg.345]    [Pg.744]    [Pg.453]    [Pg.539]    [Pg.180]    [Pg.150]    [Pg.231]    [Pg.53]    [Pg.152]    [Pg.372]    [Pg.61]    [Pg.159]    [Pg.169]    [Pg.5]    [Pg.1756]    [Pg.149]    [Pg.19]    [Pg.79]    [Pg.70]    [Pg.1750]    [Pg.572]    [Pg.76]    [Pg.200]    [Pg.454]    [Pg.6]    [Pg.7]    [Pg.9]    [Pg.162]    [Pg.227]    [Pg.482]   
See also in sourсe #XX -- [ Pg.21 , Pg.63 ]

See also in sourсe #XX -- [ Pg.21 , Pg.63 ]




SEARCH



Continuous rating

Corrosion metals

Corrosion rate continued

Corrosion, metallic

Metals continued

Metals corrosion rate

© 2024 chempedia.info