Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion dezincification

In addition to ductile iron and PVC, copper and lead are used in pipes, and brass in fixtures and connections. Lead is released because of uniform corrosion. Copper is also released because of uniform corrosion, localized-attack cold water pitting, hot water pitting, MIC, corrosion fatigue, and erosion-corrosion. Lead pipes and lead-tin solder exhibit uniform corrosion. Brass corrosion includes erosion-corrosion, impingement corrosion, dezincification, and SCC. The direct health impacts are because of increased copper, lead, and zinc concentrations in the drinking water. Mechanical problems because of corrosion include leaks from perforated pipes, rupture of pipes, and the loss of water pressure because of blockage of pipes by corrosion products. [Pg.271]

Localized corrosion, which occurs when the anodic sites remain stationary, is a more serious industrial problem. Forms of localized corrosion include pitting, selective leaching (eg, dezincification), galvanic corrosion, crevice or underdeposit corrosion, intergranular corrosion, stress corrosion cracking, and microbiologicaHy influenced corrosion. Another form of corrosion, which caimot be accurately categorized as either uniform or localized, is erosion corrosion. [Pg.266]

Brasses are susceptible to dezincification in aqueous solutions when they contain >15 wt% zinc. Stress corrosion cracking susceptibiUty is also significant above 15 wt % zinc. Over the years, other elements have been added to the Cu—Zn base alloys to improve corrosion resistance. For example, a small addition of arsenic or phosphoms helps prevent dezincification to make brasses more usefiil in tubing appHcations. [Pg.231]

Admiralty Brass and Naval Brass are 30 and 40% zinc alloys, respectively, to which a 1% tin addition has been added. Resistance to dezincification of Cu—Zn alloys is increased by tin additions. Therefore, these alloys are important for thein corrosion resistance in condenser tube appHcations. In these, as weU as the other higher zinc compositions, it is common to use other alloying additives to enhance corrosion resistance. In particular, a small amount (0.02—0.10 wt %) of arsenic (C443), antimony (C444), or phosphoms (C445) is added to control dezincification. When any of these elements are used, the alloy is referred as being "inhibited." For good stress corrosion resistance, it is recommended that these alloys be used in the fiiUy annealed condition or in the cold worked plus stress reHef annealed condition. [Pg.231]

Conditions that favor dezincification include stagnant solutions, especially acidic ones, high temperatures, and porous scale formation (2). Additions of small amounts of arsenic, antimony, or phosphoms can increase the resistance to dezincification. These elements are, however, not entirely effective in preventing the dezincification of the two-phase (cc—P) brasses because dezincification of the P-phase is not prevented (31). Another area of corrosion concern involves appHed or residual stresses from fabrication that can lead to EIC of brasses in the form of stress-corrosion cracking. [Pg.280]

Parting, or Dealloying, Corrosion This type of corrosion occurs when only one component of an alloy is removed by corrosion. The most common type is dezincification of brass. [Pg.2420]

Dezincification Dezincification is corrosion of a brass alloy containing zinc in which the principal product of corrosion is metallic copper. This may occur as plugs rilling pits (plug type) or as continuous layers surrounding an unattacked core of brass (general type). The mechanism may involve overall corrosion of the alloy followed by redeposition of the copper from the corrosion products or selective corrosion of zinc or a high-zinc phase to leave copper residue. This form of corrosion is commonly encountered in brasses that contain more than 15 percent zinc and can be either eliminated or reduced by the addition ox small amounts of arsenic, antimony, or ph osphorus to the alloy. [Pg.2420]

Figure 13.5 Plug-type dezincification on the internal surface of a brass condenser tube. Note the extreme porosity of the copper plugs. Tube wall thickness was 0.040 in. (0.10 cm). Compare to Fig. 13.13. (Courtesy of National Association of Corrosion Engineers, Corrosion 89 Paper No. 197 by H. M. Herro.)... Figure 13.5 Plug-type dezincification on the internal surface of a brass condenser tube. Note the extreme porosity of the copper plugs. Tube wall thickness was 0.040 in. (0.10 cm). Compare to Fig. 13.13. (Courtesy of National Association of Corrosion Engineers, Corrosion 89 Paper No. 197 by H. M. Herro.)...
Figure 13.9 Stratified copper corrosion product in plug-type dezincification. Denickelification... Figure 13.9 Stratified copper corrosion product in plug-type dezincification. Denickelification...
The holes and depressions on external surfaces were caused by deep dezincification on internal surfaces. The porous corrosion product plugs... [Pg.305]

The dezincification was caused by underdeposit corrosion. The fact that the brass was not an inhibited grade was a major contributing factor. Chemical cleaning had not been done since this exchanger was installed. No chemical treatment was used on either external or internal surfaces. [Pg.306]

Two sections of utility condenser tubing were received. One of the sections had deep plug-type dezincification on internal surfaces (Fig. 13.5) the other showed only superficial corrosion on internal surfaces (Fig. 13.13). [Pg.308]

In contrast, the selective dissolution or leaching-out by corrosion of one component of a single-phase alloy is of considerable practical importance. The most common example of this phenomenon, which is also referred to as parting , is dezincification, i.e. the selective removal of zinc from brass (see Section 1.6). Similar phenomena are observed in other binary copper-base alloys, notably Cu-Al, as well as in other alloy systems. [Pg.48]

In principle the selective dissolution of the less noble component of a singlephase alloy would perhaps be expected and is in fact observed (dezincification of an a-brass, etc.) even though the details of the mechanism by which it occurs is not yet fully understood. In contrast, the preferential attack of the less noble phase of a two-phase alloy is not only expected and observed —the mechanism by which it occurs in practice is also quite clear. Selective dissolution of the more active phase of a two-phase alloy is best exemplified by the graphitic corrosion (or graphitisation) of grey cast iron. [Pg.48]

Pitting may be defined as a limiting case of localised attack in which only small areas of the metal surface are attacked whilst the remainder is largely unaffected, and this definition is applicable irrespective of the mechanism involved dezincification, crevice corrosion and impingement attack can all result in pitting, although the mechanisms of these three processes are quite different. [Pg.171]

Chlorides have probably received the most study in relation to their effect on corrosion. Like other ions, they increase the electrical conductivity of the water so that the flow of corrosion currents will be facilitated. They also reduce the effectiveness of natural protective films, which may be permeable to small ions the effect of chloride on stainless steel is an extreme example but a similar effect is noted to a lesser degree with other metals. Turner" has observed that the meringue dezincification of duplex brasses is affected by the chloride/bicarbonate hardness ratio. [Pg.354]

Many of the alloys of copper are more resistant to corrosion than is copper itself, owing to the incorporation either of relatively corrosion-resistant metals such as nickel or tin, or of metals such as aluminium or beryllium that would be expected to assist in the formation of protective oxide films. Several of the copper alloys are liable to undergo a selective type of corrosion in certain circumstances, the most notable example being the dezincification of brasses. Some alloys again are liable to suffer stress corrosion by the combined effects of internal or applied stresses and the corrosive effects of certain specific environments. The most widely known example of this is the season cracking of brasses. In general brasses are the least corrosion-resistant of the commonly used copper-base alloys. [Pg.685]

In the tests described by Tracy, a high-tensile brass suffered severe dezinc-ification (Table 4.11). The loss in tensile strength for this material was 100% and for a non-arsenical 70/30 brass 54% no other material lost more than 23% during 20 years exposure. In Mattsson and Holm s tests the highest corrosion rates were shown by some of the brasses. Dezincification caused losses of tensile strength of up to 32% for a P brass and up to 12% for some of the a-P brasses no other materials lost more than 5% in 7 years. Dezinc-ification, but to a lesser degree, occurred also in the a brasses tested, even in a material with as high a copper content as 92%. Incorporation of arsenic in the a brasses consistently prevented dezincification only in marine atmospheres. [Pg.690]

From the work described and other investigations , it is evident that copper and most copper alloys are highly resistant to atmospheric corrosion. In general, copper itself is as good as, or better than, any of the alloys. Some of the brasses are liable to suffer rather severe dezincification and it is unwise to expose these to the more corrosive atmospheres without applying some protection. [Pg.690]

The three most corrosive sites were rifle peat (pH 2-6), cinders (pH 7 -6) and tidal marsh (pH 6-9). Corrosion of some of the alloys was particularly severe in the cinders. The behaviour of the brasses tested, particularly those high in zinc, was rather different from that of the other materials. In most cases dezincification occurred and the brasses were the worst materials in... [Pg.692]

Dezincification of brasses When dezincihcation occurs, regions of the brass become replaced by a porous mass of copper which, though retaining the shape of the original article, has virtually no strength. There has long been discussion as to whether there is selective corrosion of the zinc in the brass, which leaves the copper behind, or whether complete dissolution of the brass occurs, followed by re-deposition of copper. Possibly both processes occur in different circumstances. The mechanism has been investigated and discussed by Evans, Fink", Lucey , Feller" and Heidersbach , and is referred to in many other papers. ... [Pg.695]

With a single-phase brass the whole of the metal in the corroded areas is affected. Dezincification may proceed fairly uniformly over the surface, and this layer type takes much longer to cause perforation than the localised plug type that more often occurs . With a two-phase brass the zinc-rich 8 phase is preferentially attacked as shown in Fig. 4.12. Eventually the a phase may be attacked as well. The zinc corrosion products that accompany dezincification may be swept away, or in some conditions may form voluminous deposits on the surface which may lead to blockages, e.g. in fittings. [Pg.695]

In general, the rate of dezincification increases as the zinc content rises, and great care needs to be exercised in making brazed joints with copper/zinc brazing alloys, particularly if they are to be exposed to sea-water. Under these conditions, a properly designed capillary joint may last for some time, but it is preferable to use corrosion-resistant jointing alloys such as silver solders (e.g. BS 1845, Type AGJ or /4G5) . [Pg.695]

Addition of about 0 04% arsenic will inhibit dezincification of a brasses in most circumstances and arsenical a brasses can be considered immune to dezincification for most practical purposes . There are conditions of exposure in which dezincification of these materials has been observed, e.g. when exposed outdoors well away from the sea , or when immersed in pure water at high temperature and pressure, but trouble of this type rarely arises in practice. In other conditions, e.g. in polluted sea-water, corrosion can occur with copper redeposition away from the site of initial attack, but this is not truly dezincification, which, by definition, requires the metallic copper to be produced in situ. The work of Lucey goes far in explaining the mechanism by which arsenic prevents dezincification in a brasses, but not in a-/3 brasses (see also Section 1.6). An interesting observation is that the presence of a small impurity content of magnesium will prevent arsenic in a brass from having its usual inhibiting effect . [Pg.696]

Additions of antimony or phosphorus, in amounts similar to arsenic, are claimed to be also capable of preventing dezincification of a brasses. Most manufacturers use arsenic, however, and it certainly appears desirable to avoid phosphorus, since Bern has shown that this element can, in some circumstances, lead to an undesirable susceptibility to intercrystalline corrosion. The same appears to be true of excessive amounts of arsenic (over about 0-05%). [Pg.696]

It is hardly surprising that the preparation of surfaces of plain specimens for stress-corrosion tests can sometimes exert a marked influence upon results. Heat treatments carried out on specimens after their preparation is otherwise completed can produce barely perceptible changes in surface composition, e.g. decarburisation of steels or dezincification of brasses, that promote quite dramatic changes in stress-corrosion resistance. Similarly, oxide films, especially if formed at high temperatures during heat treatment or working, may influence results, especially through their effects upon the corrosion potential. [Pg.1375]

Brass water fittings give no trouble except that dezincification may occur in acid waters or waters of high chloride content, especially when hot. This dezincification has three effects. Firstly, the replacement of brass by porous copper may extend right through the wall of the fitting and permit water to seep through. Secondly, the zinc which is dissolved out of the brass may form very voluminous hard corrosion products and eventually block the waterway —this is often the case in hot soft waters. Thirdly, and often the most important, the mechanical properties of the brass may deteriorate. For instance, a dezincified screwed union will break off when an attempt is made to unscrew it and a dezincified tap or ball-valve seat is readily eroded by the water. [Pg.60]

As is the case with other types of corrosion testing, mass-loss determinations may fail to indicate the actual damage suffered by specimens that are attacked intergranularly or in such a manner as dezincification. In such cases, mechanical tests will be required as discussed already in the section on evaluation techniques. [Pg.1069]

Rubber vulcanised-determination of adhesion to, and corrosion of, metals Corrosion of metals and alloys determination of dezincification resistance of brass Sulphur dioxide test with general condensation of moisture... [Pg.1104]

Dezincification preferential corrosion of zinc from brass resulting in a copper-rich residue on the surface of the alloy. The term also applies to preferential loss of the zinc component by evaporation at elevated temperature. [Pg.1366]


See other pages where Corrosion dezincification is mentioned: [Pg.164]    [Pg.164]    [Pg.274]    [Pg.295]    [Pg.297]    [Pg.297]    [Pg.395]    [Pg.7]    [Pg.906]    [Pg.116]    [Pg.188]    [Pg.190]    [Pg.359]    [Pg.689]    [Pg.689]    [Pg.693]    [Pg.696]    [Pg.709]    [Pg.102]    [Pg.1145]   
See also in sourсe #XX -- [ Pg.181 ]




SEARCH



Dezincification

© 2024 chempedia.info