Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion control electrochemical polarization

Electrochemical methods of protection rest on different precepts (1) electroplating of the corroding metal with a thin protective layer of a more corrosion-resistant metal, (2) electrochemical oxidation of the surface or application of other types of surface layer, (3) control of polarization characteristics of the corroding metal (the position and shape of its polarization curves), and (4) control of potential of the corroding metal. [Pg.384]

This chapter outlines the basic aspects of interfacial electrochemical polarization and their relevance to corrosion. A discussion of the theoretical aspects of electrode kinetics lays a foundation for the understanding of the electrochemical nature of corrosion. Topics include mixed potential theory, reversible electrode potential, exchange current density, corrosion potential, corrosion current, and Tafel slopes. The theoretical treatment of electrochemistry in this chapter is focused on electrode kinetics, polarization behavior, mass transfer effects, and their relevance to corrosion. Analysis and solved corrosion problems are designed to understand the mechanisms of corrosion processes, learn how to control corrosion rates, and evaluate the protection strategies at the metal-solution interface [1-7]. [Pg.94]

Cathodic protection (CP) is an electrical method of mitigating corrosion on metallic structures that are exposed to electrolytes such as soils and waters. Corrosion control is achieved by forcing a defined quantity of direct current to flow from auxiliary anodes through the electrolyte and onto the metal structure to be protected. Theoretically, corrosion of the structure is completely eliminated when the open-circuit potentials of the cathodic sites are polarized to the open-circuit potentials of the anodic sites. The entire protected structure becomes cathodic relative to the auxiliary anodes. Therefore, corrosion of the metal structure will cease when the applied cathodic current equals the corrosion current. There are two basic methods of corrosion control by cathodic protection. One involves the use of current that is produced when two electrochemically dissimilar metals or alloys (Table 19.1) are metallically connected and exposed to the electrolyte. This is commonly referred to as a sacrificial or galvanic cathodic protection system. The other method of cathodic protection involves the use of a direct current power source and auxiliary anodes, which is commonly referred to as an impressed-current cathodic protection system. Then cathodic protection is a technique to reduce the corrosion rate of a metal surface by making it the cathode of an electrochemical cell [3]. [Pg.491]

Immersion tests provide no information about reaction mechanisms and often they require relatively long exposure times. Electrochemical tests do not have these drawbacks and they are therefore widely used in practice. In the following electrochemical polarization methods are presented that provide information on the rate of uniform corrosion under conditions where the rate is controlled by charge-transfer. Other electrochemical test methods will be presented in subsequent chapters. [Pg.138]

Electrochemical polarization data 54 5. Corrosion control through exclusion of the ... [Pg.29]

Electrochemical impedance spectroscopy By application of small AC voltages in the system of interest, the response of the electrochemical interface of interest to a controlled electrochemical current (degree of polarization, temperature and concentration of species) is determined This information expressed in terms of impedance is utilized in analyzing the corrosion resistance of the system. [Pg.646]

A simplification of the polarization resistance technique is the linear polarization technique in which it is assumed that the relationship between E and i is linear in a narrow range around E . Usually only two points ( , 0 are measured and B is assumed to have a constant value of about 20 mV. This approach is used in field tests and forms the basis of commercial corrosion rate monitors. Rp can also be determined as the dc limit of the electrochemical impedance. Mansfeld et al. used the linear polarization technique to determine Rp for mild steel sensors embedded in concrete exposed to a sewer environment for about 9 months. One sensor was periodically flushed with sewage in an attempt to remove the sulfuric acid produced by sulfur-oxidizing bacteria within a biofilm another sensor was used as a control. A data logging system collected Rp at 10-min intervals simultaneously for the two corrosion sensors and two pH electrodes placed at the concrete surface. Figure 2 shows the cumulative corrosion loss (Z INT) obtained by integration of the MRp time curves as ... [Pg.211]

In many STM studies little effort has been made to control the atmosphere within the electrochemical cell. Yet oxygen is known to exert a major role in the chemistry and corrosion of many transition metals. For example, several STM studies have used the copper/copper ion reference electrode, yet the electrode is known to be polarized from its reversible condition by oxygen, leading to significant dissolution [154]. These effects become particularly significant in the smdy of metal deposition and dissolu-... [Pg.246]

Electrochemical Testing. Potentlodynamlc polarization measurements provided a sensitive means of evaluating the inhibitors with respect to environmental (Cl ) corrosion protection. The results obtained from anodlcally polarizing polished 7075-T6 A1 samples are presented in Fig. 9. For the control electrolyte (O.IN Na2S0, 0.002N KCl, no inhibitor), pitting was observed almost immediately on the surface, and the aluminum showed no evidence of passivation. The addition of NTMP to the solution did not appear to protect the metal... [Pg.244]

Figure 3 Electrical equivalent circuit model commonly used to represent an electrochemical interface undergoing corrosion. Rp is the polarization resistance, Cd] is the double layer capacitance, Rct is the charge transfer resistance in the absence of mass transport and reaction intermediates, RD is the diffusional resistance, and Rs is the solution resistance, (a) Rp = Rct when there are no mass transport limitations and electrochemical reactions involve no absorbed intermediates and nearly instantaneous charge transfer control prevails, (b) Rp = Rd + Rct in the case of mass transport limitations. Figure 3 Electrical equivalent circuit model commonly used to represent an electrochemical interface undergoing corrosion. Rp is the polarization resistance, Cd] is the double layer capacitance, Rct is the charge transfer resistance in the absence of mass transport and reaction intermediates, RD is the diffusional resistance, and Rs is the solution resistance, (a) Rp = Rct when there are no mass transport limitations and electrochemical reactions involve no absorbed intermediates and nearly instantaneous charge transfer control prevails, (b) Rp = Rd + Rct in the case of mass transport limitations.
Apparatus for electrochemical measurements during corrosion fatigue. CF tests can be done using an apparatus designed by the Continental Oil Company, as shown in Figure 6.52.110,111 The polarization potential and current can be controlled for the four samples tests at the same time. The apparatus consists of a Monel tank in which four specimens are subjected to cyclic bending. The preliminary step in the experiment is to determine the displacement caused by the desired applied load. The exact stresses are then determined with the use of strain gages. [Pg.423]


See other pages where Corrosion control electrochemical polarization is mentioned: [Pg.580]    [Pg.581]    [Pg.101]    [Pg.313]    [Pg.780]    [Pg.172]    [Pg.205]    [Pg.783]    [Pg.264]    [Pg.6073]    [Pg.573]    [Pg.178]    [Pg.181]    [Pg.402]    [Pg.554]    [Pg.884]    [Pg.145]    [Pg.470]    [Pg.2430]    [Pg.240]    [Pg.19]    [Pg.20]    [Pg.1008]    [Pg.286]    [Pg.140]    [Pg.294]    [Pg.385]    [Pg.147]    [Pg.300]    [Pg.390]    [Pg.2]    [Pg.2185]    [Pg.130]    [Pg.162]    [Pg.2695]    [Pg.2696]    [Pg.1008]    [Pg.1008]   
See also in sourсe #XX -- [ Pg.80 ]




SEARCH



Corrosion control

Corrosion electrochemical

Polarization control

Polarization electrochemical

© 2024 chempedia.info