Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper tartarate

Copper compounds are used routinely and widely to control freshwater snails that serve as intermediate vectors of schistosomiasis and other diseases that afflict humans (Hasler 1949 NAS 1977 Rowe and Prince 1983 Winger etal. 1984 Al-Sabri etal. 1993). These compounds include copper sulfate, copper pentachlorophenate, copper carbonate, copper-tartaric acid, Paris green (copper arsenite-acetate), copper oxide, copper chloride, copper acetyl acetonate, copper dimethyl dithiocar-bamate, copper ricinoleate, and copper rosinate (Cheng 1979). Also, many species of oyster enemies are controlled by copper sulfate dips. All tested species of marine gastropods, tunicates, echinoderms, and crabs that had been dipped for 5 seconds in a saturated solution of copper sulfate died if held in air for as little as a few seconds to 8 h mussels, however, were resistant (MacKenzie 1961). [Pg.130]

PLANETARY S. (S) PISCES COPPER TARTAR PISCES, POCASH GUM POUND... [Pg.410]

Acid cleaners based on sulfamic acid are used in a large variety of appHcations, eg, air-conditioning systems marine equipment, including salt water stills wells (water, oil, and gas) household equipment, eg, copper-ware, steam irons, humidifiers, dishwashers, toilet bowls, and brick and other masonry tartar removal of false teeth (50) dairy equipment, eg, pasteurizers, evaporators, preheaters, and storage tanks industrial boilers, condensers, heat exchangers, and preheaters food-processing equipment brewery equipment (see Beer) sugar evaporators and paper-mill equipment (see also Evaporation Metal surface treati nts Pulp). [Pg.64]

In a copper or iron kettle of 4-I. capacity is placed a solution of 200 g. of d-tartaric acid and 700 g. of sodium hydroxide in 1400 cc. of water. A 12-I. flask through which cold water is run is placed in the mouth of the kettle in order to prevent loss of water vapor, and the mixture is boiled gently over an open flame for four hours. The solution is now transferred to a 12-I. flask or crock and partially neutralized with 1400 cc. of commercial hydrochloric acid (density 1.19). To the still alkaline solution is now added just enough sodium sulfide to precipitate all the iron or copper which has been dissolved from the kettle (Note i). The filtered solution is then just acidified with hydrochloric acid, boiled to expel all hydrogen sulfide, and made very faintly alkaline to phenolphthalein with sodium hydroxide solution. To the hot solution is then added a concentrated solution of 300 g. of anhydrous calcium chloride which causes an immediate precipitation of calcium tff-tartrate and mesotartrate. [Pg.82]

The copper complex is very stable at neutral pH, but it fades very rapidly in the presence of hydrogen ions. Other complex formers such as tartaric acid or citric acid and thiourea interfere with the reaction and, therefore, should not be included in mobile phases used for the separation of amino acids [3]. [Pg.246]

Chemical deposition Simple immersion deposits of copper may be obtained on iron and steel in a solution containing, for example, 15 g/1 of copper sulphate and 8 g/1 sulphuric acid, and on zinc-base alloy in a solution containing copper sulphate 300 g/1, tartaric acid 50 g/1 and ammonium hydroxide 30ml/l . Such deposits are thin and porous and are mainly plated for their colour, e.g. for identification, or for their lubricating properties, e.g. in wire drawing. [Pg.519]

Determination of copper as copper(I) thiocyanate Discussion. This is an excellent method, since most thiocyanates of other metals are soluble. Separation may thus be effected from bismuth, cadmium, arsenic, antimony, tin, iron, nickel, cobalt, manganese, and zinc. The addition of 2-3 g of tartaric acid is desirable for the prevention of hydrolysis when bismuth, antimony, or tin is present. Excessive amounts of ammonium salts or of the thiocyanate precipitant should be absent, as should also oxidising agents the solution should only be slightly acidic, since the solubility of the precipitate increases with decreasing pH. Lead, mercury, the precious metals, selenium, and tellurium interfere and contaminate the precipitate. [Pg.455]

The effect of different ions upon the titration is similar to that given under iron(III) (Section 17.57). Iron(III) interferes (small amounts may be precipitated with sodium fluoride solution) tin(IV) should be masked with 20 per cent aqueous tartaric acid solution. The procedure may be employed for the determination of copper in brass, bronze, and bell metal without any previous separations except the removal of insoluble lead sulphate when present. [Pg.724]

Copper(II) oxide and cobalt(II) hydroxide form cements with solutions of many multifunctional organic acids propanetricarboxylic acid, tartaric acid, malic acid, pyruvic acid, mellitic acid, gallic acid, tannic acid and phytic acid (Allen et al., 1984 Prosser et al., 1986). These have been used mainly in cement devices for the sustained release of copper and cobalt (Manston et al., 1985 Mansion Gleed, 1985). Little is known about... [Pg.315]

In the presence of soluble cations (e.g. Fe, Cu), additions of small quantities of organic acid (e.g. oxalic, tartaric) improve gold recovery in the copper concentrate. [Pg.10]

S)-(-)-CITRONELLOL from geraniol. An asymmetrically catalyzed Diels-Alder reaction is used to prepare (1 R)-1,3,4-TRIMETHYL-3-C YCLOHEXENE-1 -CARBOXALDEHYDE with an (acyloxy)borane complex derived from L-(+)-tartaric acid as the catalyst. A high-yield procedure for the rearrangement of epoxides to carbonyl compounds catalyzed by METHYLALUMINUM BIS(4-BROMO-2,6-DI-tert-BUTYLPHENOXIDE) is demonstrated with a preparation of DIPHENYL-ACETALDEHYDE from stilbene oxide. A palladium/copper catalyst system is used to prepare (Z)-2-BROMO-5-(TRIMETHYLSILYL)-2-PENTEN-4-YNOIC ACID ETHYL ESTER. The coupling of vinyl and aryl halides with acetylenes is a powerful carbon-carbon bond-forming reaction, particularly valuable for the construction of such enyne systems. [Pg.147]

Box recommends the addition of oxalic acid, tartaric acid or another di-carboxylic acid, to sulfuric acid for plating technetium either as a metal or oxide. On copper electrodes in 0.7 M oxalate and 0.45 M sulfuric acid, more than 99% of technetium metal is plated at 1.0-1.3 A/cm from a pertechnetate solution. However, from 0.4 M oxalate and 1.9 M sulfuric acid it is the oxide that is deposited. [Pg.130]

The stability constants of yttrium tartrates have been determined and a mixed copper-yttrium tartaric (T) acid species, Y2CuT3H q unknown), was detected. ... [Pg.451]

DFT calculations were used to quantify the different interactions. All interactions were found to be repulsive. The most repulsive interactions were along the copper rows (in the [lIO] direction), due to a through-surface interaction between carboxylate groups of different tartaric acid molecules binding next to each other. In addition to these interactions we have proposed the existence of an adsorbate-induced surface stress which reduces the binding energy when more than three tartaric acid molecules bind to the same copper row. This surface stress causes the empty troughs in the (9 0,1 2) ordered structure. ... [Pg.165]


See other pages where Copper tartarate is mentioned: [Pg.120]    [Pg.164]    [Pg.120]    [Pg.164]    [Pg.528]    [Pg.21]    [Pg.10]    [Pg.289]    [Pg.115]    [Pg.223]    [Pg.97]    [Pg.2]    [Pg.394]    [Pg.15]    [Pg.125]    [Pg.33]    [Pg.204]    [Pg.154]    [Pg.92]    [Pg.33]    [Pg.405]    [Pg.298]    [Pg.301]    [Pg.135]    [Pg.10]    [Pg.289]    [Pg.180]    [Pg.393]    [Pg.270]    [Pg.293]    [Pg.727]   
See also in sourсe #XX -- [ Pg.120 ]




SEARCH



Tartar

© 2024 chempedia.info