Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper manganese

Minerals. Nuts are considered to be a good source of minerals essential for nutrition, supplying elements of copper, manganese, iron, and sulfur (see Mineral nutrients). The values for the mineral constituents of many nuts shown in Table 2 are averages of available analytical data. Values for the mineral content of the peanut kernel (28) and ash constituents in the macadamia kernel (29) and cashew (26) have also been reported. Chufa nuts have a high sihcon content. [Pg.272]

Metals. Transition-metal ions, such as iron, copper, manganese, and cobalt, when present even in small amounts, cataly2e mbber oxidative reactions by affecting the breakdown of peroxides in such a way as to accelerate further attack by oxygen (36). Natural mbber vulcani2ates are especially affected. Therefore, these metals and their salts, such as oleates and stearates, soluble in mbber should be avoided. [Pg.246]

Most commercial sorbic acid is produced by a modification of this route. Catalysts composed of metals (2inc, cadmium, nickel, copper, manganese, and cobalt), metal oxides, or carboxylate salts of bivalent transition metals (2inc isovalerate) produce a condensation adduct with ketene and crotonaldehyde (22—24), which has been identified as (5). [Pg.283]

Copper, Manganese, and Cobalt Borates. Borate salts of copper, manganese, and cobalt ate precipitated when borax is added to aqueous solutions of the metal(Il) sulfates or chlorides (152). However, these materials are no longer produced commercially. [Pg.209]

The metal salts of neodecanoic acid have found wide usage as driers for paints and inks (95,96). Metal neodecanoates that are used include silver (80), cobalt (82), and zirconium (79), along with lead, copper, manganese, and 2inc (see Driers and metallic soaps). [Pg.106]

Cobalt is the thirtieth most abundant element on earth and comprises approximately 0.0025% of the earth s cmst (3). It occurs in mineral form as arsenides, sulfides, and oxides trace amounts are also found in other minerals of nickel and iron as substitute ions (4). Cobalt minerals are commonly associated with ores of nickel, iron, silver, bismuth, copper, manganese, antimony, and 2iac. Table 1 Hsts the principal cobalt minerals and some corresponding properties. A complete listing of cobalt minerals is given ia Reference 4. [Pg.369]

In Moroccan deposits, cobalt occurs with nickel in the forms of smaltite, skuttemdite, and safflorite. In Canadian deposits, cobalt occurs with silver and bismuth. Smaltite, cobaltite, erythrite, safflorite, linnaeite, and skuttemdite have been identified as occurring in these deposits. AustraUan deposits are associated with nickel, copper, manganese, silver, bismuth, chromium, and tungsten. In these reserves, cobalt occurs as sulfides, arsenides, and oxides. [Pg.370]

NE is unstable in light and air, especially at neutral and alkaline pH. Oxidation to noradrenochrome occurs in the presence of oxygen and such divalent metal ions as copper, manganese, and nickel. [Pg.355]

Impurities in mineral fillers can have serious effects. Coarse particles (grit) will lead to points of weakness in soft polymers which will therefore fail under stresses below that which might be expected. Traces of copper, manganese and iron can affect the oxidative stability whilst lead may react with sulphur-containing additives or sulphurous fumes in the atmosphere to give a discoloured product. [Pg.127]

Use Figure 17-11 to estimate the resistivities of two metal samples, one made of pure copper and the other of a copper-manganese alloy containing one atom of manganese for every one hundred copper atoms. Calculate the ratio of the cost due to power loss from wire of the impure material to the cost due to the power loss from wire of the pure material. [Pg.311]

The raw materials needed to supply about ten million new automobiles a year do not impose a difficult problem except in the case of the noble metals. Present technology indicates that each car may need up to ten pounds of pellets, two pounds of monoliths, or two pounds of metal alloys. The refractory oxide support materials are usually a mixture of silica, alumina, magnesia, lithium oxide, and zirconium oxide. Fifty thousand tons of such materials a year do not raise serious problems (47). The base metal oxides requirement per car may be 0.1 to 1 lb per car, or up to five thousand tons a year. The current U.S. annual consumption of copper, manganese, and chromium is above a million tons per year, and the consumption of nickel and tungsten above a hundred thousand tons per year. The only important metals used at the low rate of five thousand tons per year are cobalt, vanadium, and the rare earths. [Pg.81]

The primary ingredients of most fuel additive formulations almost always include metals such as iron, copper, manganese, magnesium, or cerium. Depending on the form of the treatment, these metals can be present in several forms, including ... [Pg.679]

The rate of peroxide decomposition and the resultant rate of oxidation are markedly increased by the presence of ions of metals such as iron, copper, manganese, and cobalt [13]. This catalytic decomposition is based on a redox mechanism, as in Figure 15.2. Consequently, it is important to control and limit the amounts of metal impurities in raw rubber. The influence of antioxidants against these rubber poisons depends at least partially on a complex formation (chelation) of the damaging ion. In favor of this theory is the fact that simple chelating agents that have no aging-protective activity, like ethylene diamine tetracetic acid (EDTA), act as copper protectors. [Pg.466]

This short section attempts to bring together the range of metalloenzymes that are encountered in biodegradation and biotransformation. Fe is the most common component of enzymes, and is followed in freqnency by zinc and molybdennm, while some important enzymes contain nickel, copper, manganese, tnngsten, or vanadinm. [Pg.181]

A number of electrolytic processes are used for the industrial production of metals. Some metals such as zinc, copper, manganese, gallium, chromium, etc. are electrowon from aqueous baths. Another common electrolytic process used is molten salt electrolysis. The most important application of molten salt electrolysis till now has been in the electrowinning of metals. Today aluminum, magnesium, lithium, sodium, calcium, boron, cerium, tantalum, and mischmetal are produced in tonnage quantities by molten salt electrolysis. As a representative example, the electrowinning process for aluminum is taken up. [Pg.709]

Trace elements are essential cofactors for numerous biochemical processes. Trace elements that are added routinely to PN include zinc, selenium, copper, manganese, and chromium. There are various commercial parenteral trace element formulations that can be added to PN admixtures (e.g., MTE-5 ). Zinc is important for wound healing, and patients with high-output fistulas, diarrhea, burns, and large open wounds may require additional zinc supplementation. Patients may lose as much as 12 to 17 mg zinc per liter of gastrointestinal (GI) output (e.g., from diarrhea or enterocutaneous fistula losses) however, others have demonstrated that 12 mg/day may be adequate to maintain these patients in positive zinc balance.18 Patients with chronic diarrhea, malabsorption, and short-gut syndrome may have increased selenium losses and may require additional selenium supplementation. Patients with severe cholestasis should have copper and manganese... [Pg.1498]

Trace elements Provide standard parenteral trace element preparation (containing zinc, copper, manganese, chromium, and selenium) daily in PN Assess patient for any possible adjustments needed (e.g., delete copper and manganese from PN if the patient has evidence of severe cholestasis, supplemental zinc and selenium for any Gl or fistula losses) or potential deficiencies... [Pg.1504]

BOD, inorganic salts, heavy metals pathogens, refractory organic compounds, plastics nitrate metals including iron, copper, manganese suspended solids... [Pg.45]

Iseler, G. W. et al., Int. Conf. Indium Phosphide Relat. Mater., 1992, 266 Reaction of beryllium, copper, manganese, thorium or zirconium is incandescent when heated with phosphorus [1] and that of cerium, lanthanum, neodymium and praseodymium is violent above 400°C [2], Osmium incandesces in phosphorus vapour, and platinum bums vividly below red-heat [3], Red phosphorus shows very variable vapour pressure between batches (not surprising, it is an indeterminate material). This leads to explosions when preparing indium phosphide by reactions involving fusion with phosphorus in a sealed tube [4],... [Pg.1887]

Hsu J.H., Lo S.L. Charaterization and extractability of copper, manganese, and zinc in swine manure composts. J Environ Qual 2000 29 447-453. [Pg.340]

This filler is mined, ground and sieved to a particle size less than 100 mesh and used as an inert diluent and cheapening filler for rubber compounds. It is usually off-white to cream in colour. Depending upon source, the filler can be contaminated with metal ions, e.g., iron, copper, manganese, which can catalyse oxidation. It can be used in very high loadings with great effect on compound hardness. [Pg.147]

The heavy metals copper, manganese, cobalt and zinc were omitted individually and in combination from MS and B5 media to determine the effect on antibody stability in solution [63]. When IgG, antibody was added to these modified media in experiments similar to the one represented in Figure 2.2, only the B5 medium without Mn showed a significant improvement in antibody retention relative to normal culture media. Nevertheless, protein losses were considerable as only about 30% of the added antibody could be detected in the Mn-free medium after about 5 h. The beneficial effect of removing Mn was lost when all four heavy metals, Cu, Mn, Co and Zn, were omitted simultaneously. The reason for these results is unclear. Addition of the metal chelating agent ethylenediaminetetraacetate (EDTA) had a negligible effect on antibody retention in both MS and B5 media [63]. [Pg.34]

Other methods reported for the determination of beryllium include UV-visible spectrophotometry [80,81,83], gas chromatography (GC) [82], flame atomic absorption spectrometry (AAS) [84-88] and graphite furnace (GF) AAS [89-96]. The ligand acetylacetone (acac) reacts with beryllium to form a beryllium-acac complex, and has been extensively used as an extracting reagent of beryllium. Indeed, the solvent extraction of beryllium as the acety-lacetonate complex in the presence of EDTA has been used as a pretreatment method prior to atomic absorption spectrometry [85-87]. Less than 1 p,g of beryllium can be separated from milligram levels of iron, aluminium, chromium, zinc, copper, manganese, silver, selenium, and uranium by this method. See also Sect. 5.74.9. [Pg.142]

Montgomery and Peterson [675] showed that ammonium nitrate used as a matrix modifier in seawater analysis to eliminate the interference of sodium chloride degrades the pyrolytic coating on graphite-furnace tubes. The initially enhanced sensitivities for copper, manganese, and iron are maintained for up to 15 atomisations. There is then a rapid decline to a constant lower sensitivity. The characteristics depend strongly on the particular lot of furnace tubes. To... [Pg.241]

The results demonstrate that cadmium can be determined directly the direct determination of copper, manganese, and chromium is also possible, but their application is more limited than cadmium. The lead and nickel determination proved to be the most difficult, since their determination is limited by their low sensitivity and by the overlap of their absorption profiles with the background absorbance generated by seawater matrix. The direct determination of lead and nickel by this technique can be used only for seawater samples taken in coastal or estuarine zones that are quite polluted. [Pg.245]

A poly(acrylaminophosphamic-dithiocarbamate) chelating fibre hasbeen used to preconcentratrate several trace metals in seawater by a factor of 200 [957]. The elements included beryllium, bimuth, cobalt, gallium, silver, lead, cadmium, copper, manganese, and indium. ICP-MS was used for detection. [Pg.263]

Silver, Chromium, Cadmium, Copper, Manganese, Thorium, Uranium, and Zirconium... [Pg.282]

The mechanisms of superoxide-dismuting activity of SODs are well established. Dismutation of superoxide occurs at copper, manganese, or iron centers of SOD isoenzymes CuZnSOD, MnSOD, or FeSOD. These isoenzymes were isolated from a variety of sources, including humans, animals, microbes, etc. In the case of CuZnSOD, dismutation process consists of two stages the one-electron transfer oxidation of superoxide by cupric form (Reaction (1)) and the one-electron reduction of superoxide by cuprous form (Reaction (2)). [Pg.907]

Jorhem, L., B. Sundstrom, C. Astrand, and G. Haegglund. 1989. The levels of zinc, copper, manganese, selenium, chromium, nickel, cobalt, and aluminium in the meat, liver and kidney of Swedish pigs and cattle. Zeit. Lebens.-Unters. -Forschung 188 39-44. [Pg.734]


See other pages where Copper manganese is mentioned: [Pg.251]    [Pg.481]    [Pg.366]    [Pg.274]    [Pg.270]    [Pg.379]    [Pg.389]    [Pg.188]    [Pg.243]    [Pg.619]    [Pg.707]    [Pg.311]    [Pg.692]    [Pg.100]    [Pg.59]    [Pg.1320]    [Pg.88]    [Pg.565]    [Pg.320]    [Pg.232]    [Pg.545]    [Pg.744]   


SEARCH



© 2024 chempedia.info