Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper Industry Report

The BDSA conducts industrial economic studies, on a world-wide basis, of the production, uses, trends, and outlook for the major commodities and products. Some of the publications which are used to make this information available to the public are Chemical and Rubber Industry Report Copper Industry Report Pulp, Paper, and Board Industry Report Industry Trend Series and the Outlook Studies. Copies of the latest list of BDSA publications may be obtained from any Department of Commerce field ofifice or from the Publications Officer, BDSA, U.S. Department of Commerce, Washington 25, D.C. [Pg.179]

In 1988, a comprehensive report on the technology and competitiveness of the U.S. copper industry was issued (54). This report concludes that the revitalized U.S. copper industry could compete in all but the worst foreseeable markets and that the industry s turnaround came entirely from its own efforts, with Httie governmental assistance. The U.S. copper industry is a world leader in smelter and refinery production, applying modem technology and measures to improve productivity. [Pg.210]

The sulfur industry is even more concentrated than the copper industry, and, like the latter, has been characterized by cartel agreements, rigid prices, and comparatively high profit ratios for the leading companies, according to the Commission s Report on the Sulfur Industry and International Cartels, transmitted to Congress June 16, 1947. [Pg.223]

The Business and Defense Services Administration is responsible for carrying out economic and commercial surveys of United States and foreign industry which are described in a number of special industry reports published at regular intervals. Industry Reports—Chemical and Rubber is a monthly publication which summarizes trends in these industries and includes special articles on international developments. Other industry reports in the series are Containers and Packaging (quarterly). Copper (quarterly), and Pulp, Paper and Board (quarterly). [Pg.193]

Copper acetate, ferrous acetate, silver acetate [563-63-3] basic aluminum acetate, nickel acetate [373-02-4] cobalt acetate, and other acetate salts have been reported to furnish anhydride when heated. In principle, these acetates could be obtained from low concentration acetic acid. CompHcations of soHds processing and the scarcity of knowledge about these thermolyses make industrial development of this process expensive. In the eady 1930s, Soviet investigators discovered the reaction of dinitrogen tetroxide [10544-72-6] and sodium acetate [127-09-3] to form anhydride ... [Pg.78]

Samples Analyzed by Inductively Coupled Plasma (ICP) Metals — Where two or more of the following analytes are requested on the same filter, an ICP analysis may be conducted. However, the Industrial Hygienist should specify the metals of interest in the event samples cannot be analyzed by the ICP method. A computer print-out of the following 13 analytes may be typically reported Antimony, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Manganese, Molybdenum, Nickel, Vanadium, Zinc. Arsenic — Lead, cadmium, copper, and iron can be analyzed on the same filter with arsenic. [Pg.253]

Mass Balance Estimates. Based on National Pollutant Discharge Elimination System monitoring reports, the total daily discharge of trace elements into the main stem Willamette River is of the order of 100 pounds per day. Seventy-five percent of the total is zinc with the bulk of the remainder due to chromium and copper. Table 6 identifies industrial and natural sources of trace elements into the Willamette basin. The table indicates that an average of 97 percent of all trace element loading to the basin is natural in origin. The natural component is due to weathering of soil and rocks in the basin and this... [Pg.276]

There are an estimated 800 plants in the U.S. involved in the primary or secondary recovery of nonferrous metals. These plants represent 61 subcategories. However, many of these subcategories are small, represented by only one or two plants, or do not discharge any wastewater. This chapter focuses on 296 facilities that produce the major nonferrous metals [aluminum, columbium (niobium), tantalum, copper, lead, silver, tungsten, and zinc]. The volume of wastewater discharged in this industry varies from 0 to 540 m3/T (0 to 160,000 gal/t) of metal produced.13 The global size of the industry is reflected in Table 3.1 (reported in 1000 USD) for the top 20 export countries for nonferrous base metal waste and scrap.4 Here T = metric ton = 1000 kg = 2204.6 lb, t = 2000 lb. [Pg.72]

Tables 3.39 and 3.40 illustrate TRI releases and transfers for the primary nonferrous metals smelting and refining industry. For this industry as a whole, chlorine comprises the largest number of TRI releases. This is reflected in the fact that chlorine is a byproduct of the magnesium industry and the largest reporter is a magnesium facility. The other top releases are copper compounds, zinc compounds, lead compounds, and sulfuric acid. Tables 3.39 and 3.40 illustrate TRI releases and transfers for the primary nonferrous metals smelting and refining industry. For this industry as a whole, chlorine comprises the largest number of TRI releases. This is reflected in the fact that chlorine is a byproduct of the magnesium industry and the largest reporter is a magnesium facility. The other top releases are copper compounds, zinc compounds, lead compounds, and sulfuric acid.
In 1966, Nozaki et al. reported that the decomposition of o-diazo-esters by a copper chiral Schiff base complex in the presence of olefins gave optically active cyclopropanes (Scheme 58).220 221 Following this seminal discovery, Aratani et al. commenced an extensive study of the chiral salicylaldimine ligand and developed highly enantioselective and industrially useful cyclopropanation.222-224 Since then, various complexes have been prepared and applied to asymmetric cyclo-propanation. In this section, however, only selected examples of cyclopropanations using diazo compounds are discussed. For a more detailed discussion of asymmetric cyclopropanation and related reactions, see reviews and books.17-21,225... [Pg.243]

Copper olefin complexes are usually generated by the direct reaction of a Cu(l) source, the ligand, and the corresponding olefin. Copper ethylene complexes are of interest in view of their biochemical importance,98,98a-98e their applications in organic chemistry,99,99a,99b and industrial applications.100 100 Because of this, many copper alkene complexes have been reported, with different nuclearity, in compounds with one, two, or even three C=C units coordinated to a given copper center. [Pg.174]

The deposition of CBD CdS as a junction layer for solar cell devices has proven to be a very successful industrially acceptable technique. Kessler et al.13 reported on copper indium gallium diselenide (CIGS) mini-modules (area = 16cm2) with a conversion efficiency of 16.6%, wherein CBD CdS was used as a junction layer. Basol et al.14 fabricated 9.3% active-area efficient thin-film flexible CuInSe2 (CIS) solar cells (specific power >1 kW/kg) on lightweight, flexible metallic, and polymeric (polymide-based) substrates using CBD CdS. [Pg.200]

We report here about the investigation of the low temperature watergas shift reaction on an industrial catalyst (GIRDLER G 66-B and E with copper and zinc oxides as main components) under transient conditions by means of wavefront analysis. After a qualitative analysis to obtain information about the relevant mechanistic scheme the main effort has been concentrated on the dependence of the microkinetics on different oxidation states of the catalyst. The watergas shift reaction in its overall formulation... [Pg.282]

Asymmetric synthesis of 2,5-dimethyl-2,4-hexadiene (28) and /-menthyl diazoacetate (29) with chiral copper complexes (30) was successfully conducted by Aratani et al. [13] to afford the (1 A)-chrysanthem ic acid /-menthyl ester (31) in high optical and chemical yield. Since this finding, a lot of chiral copper complexes have been reported and applied to the asymmetric synthesis of (IR)-chrysanthemate. However, these copper complexes required more than 1 mol% of the catalyst and the cis/trans ratio still remains unsatisfactory. Moreover, /-menthyl ester was crucial for the high enantioselectivity. Given an industrial production of... [Pg.37]

Raney predicted that many other metal catalysts could be prepared with this technique, but he did not investigate them [8], Copper and cobalt catalysts were soon reported by others [4,5], These catalysts were not nearly as active as Raney s nickel catalyst and therefore have not been as popular industrially however they offer some advantages such as improved selectivity for some reactions. Skeletal iron, ruthenium and others have also been prepared [9-13], Wainwright [14,15] provides two brief overviews of skeletal catalysts, in particular skeletal copper, for heterogeneous reactions. Table 5.1 presents a list of different skeletal metal catalysts and some of the reactions that are catalyzed by them. [Pg.142]

Amounts allowed range from 5 ppm in cucumbers, lettuce, radishes, and tomatoes, to 250 ppm in spices. EPA also requires industries to report spills of 1 pound or more of potassium silver cyanide and 10 pounds or more of hydrogen cyanide, potassium cyanide, sodium cyanide, calcium cyanide, or copper cyanide. [Pg.21]


See other pages where Copper Industry Report is mentioned: [Pg.79]    [Pg.115]    [Pg.361]    [Pg.6]    [Pg.40]    [Pg.481]    [Pg.164]    [Pg.2421]    [Pg.522]    [Pg.660]    [Pg.453]    [Pg.457]    [Pg.513]    [Pg.275]    [Pg.1516]    [Pg.130]    [Pg.49]    [Pg.603]    [Pg.198]    [Pg.774]    [Pg.92]    [Pg.292]    [Pg.91]    [Pg.116]    [Pg.295]    [Pg.78]    [Pg.636]    [Pg.1481]    [Pg.1544]    [Pg.198]    [Pg.69]    [Pg.174]    [Pg.186]    [Pg.229]   
See also in sourсe #XX -- [ Pg.179 ]




SEARCH



Copper industry

© 2024 chempedia.info