Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper complexes oxidation catalysts

Early catalysts for acrolein synthesis were based on cuprous oxide and other heavy metal oxides deposited on inert siHca or alumina supports (39). Later, catalysts more selective for the oxidation of propylene to acrolein and acrolein to acryHc acid were prepared from bismuth, cobalt, kon, nickel, tin salts, and molybdic, molybdic phosphoric, and molybdic siHcic acids. Preferred second-stage catalysts generally are complex oxides containing molybdenum and vanadium. Other components, such as tungsten, copper, tellurium, and arsenic oxides, have been incorporated to increase low temperature activity and productivity (39,45,46). [Pg.152]

Hydrogenation. Gas-phase catalytic hydrogenation of succinic anhydride yields y-butyrolactone [96-48-0] (GBL), tetrahydrofiiran [109-99-9] (THF), 1,4-butanediol (BDO), or a mixture of these products, depending on the experimental conditions. Catalysts mentioned in the Hterature include copper chromites with various additives (72), copper—zinc oxides with promoters (73—75), and mthenium (76). The same products are obtained by hquid-phase hydrogenation catalysts used include Pd with various modifiers on various carriers (77—80), Ru on C (81) or Ru complexes (82,83), Rh on C (79), Cu—Co—Mn oxides (84), Co—Ni—Re oxides (85), Cu—Ti oxides (86), Ca—Mo—Ni on diatomaceous earth (87), and Mo—Ba—Re oxides (88). Chemical reduction of succinic anhydride to GBL or THF can be performed with 2-propanol in the presence of Zr02 catalyst (89,90). [Pg.535]

Salts of neodecanoic acid have been used in the preparation of supported catalysts, such as silver neodecanoate for the preparation of ethylene oxide catalysts (119), and the nickel soap in the preparation of a hydrogenation catalyst (120). Metal neodecanoates, such as magnesium, lead, calcium, and zinc, are used to improve the adherence of plasticized poly(vinyl butyral) sheet to safety glass in car windshields (121). Platinum complexes using neodecanoic acid have been studied for antitumor activity (122). Neodecanoic acid and its esters are used in cosmetics as emoUients, emulsifiers, and solubilizers (77,123,124). Zinc or copper salts of neoacids are used as preservatives for wood (125). [Pg.106]

Various a-addition reactions are observed to be metal- or acid-catalyzed, or to be uncatalyzed. In this review only the metal-catalyzed reactions will be discussed, since it is generally assumed that metal isocyanide complexes are involved in these systems. A number of metal-catalyzed a-addition reactions have been mentioned recently. Copper(I) oxide seems to be the most commonly used catalyst, although other metal complexes sometimes are satisfactory. Table III presents a partial survey of this work. [Pg.47]

The oxidation of phenol, ortho/meta cresols and tyrosine with Oj over copper acetate-based catalysts at 298 K is shown in Table 3 [7]. In all the cases, the main product was the ortho hydroxylated diphenol product (and the corresponding orthoquinones). Again, the catalytic efficiency (turnover numbers) of the copper atoms are higher in the encapsulated state compared to that in the "neat" copper acetate. From a linear correlation observed [7] between the concentration of the copper acetate dimers in the molecular sieves (from ESR spectroscopic data) and the conversion of various phenols (Fig. 5), we had postulated [8] that dimeric copper atoms are the active sites in the activation of dioxygen in zeolite catalysts containing encapsulated copper acetate complexes. The high substratespecificity (for mono-... [Pg.186]

In our ongoing efforts to develop oxidation catalysts that are functional in water as environmentally berrign solvent, we synthesized a water-soluble pentadentate salen ligand with polyethylene glycol side chairts (8). After coordination of copper(II) ions to the salen ligand, a dinuclear copper(II) complex is obtained that is soluble in water, methanol and mixtures of both solvents. The aerobic oxidation of 3,5-di-tert.-butylcatechol (DTBC) into 3,5-di-terr.-butylqitinone (DTBQ) was used as a model reaction to determine the catalytically active species and initial data on its catalytic activity in 80% methanol. [Pg.473]

A still more complicated reaction is the chemiluminescent oxidation of sodium hydrogen sulfide, cysteine, and gluthathione by oxygen in the presence of heavy metal catalysts, especially copper ions 60>. When copper is used in the form of the tetrammin complex Cu(NH3) +, the chemiluminescence is due to excited-singlet oxygen when the catalyst is copper flavin mononucleotide (Cu—FMN), additional emission occurs from excited flavin mononucleotide. From absorption spectroscopic measurements J. Stauff and F. Nimmerfall60> concluded that the first reaction step consists in the addition of oxygen to the copper complex ... [Pg.79]

Catalyst activity (in terms of KAJRp) is also intrinsically dependent on the redox potential of the metal complex. The latter, in turn, depends on the relative stability of the higher (MtM+1/L) and lower (Mt"/L) oxidation states. For the case of relatively stablel 1 copper complexes, the redox potential can be calculated using the following equation [98,144,145,146] ... [Pg.242]

Copper complexes were used as efficient catalysts for selective autoxidations of flavonols (HFLA) to the corresponding o-benzoyl salicylic acid (o-BSH) and CO in non-aqueous solvents and at elevated temperatures (124-128). The oxidative cleavage of the pyrazone ring is also catalyzed by some cobalt complexes (129-131). [Pg.442]

Aminated Polystyrene-Copper Complexes as Oxidation Catalysts The Effect of the Degree of Substitution on Catalytic Activity... [Pg.7]

The basic study was performed on copper complexes with N,N,N, N1-tetramethylethane-1,2-diamine (TMED), which were known to be very effective oxidative coupling catalysts (7,12). From our first kinetic studies it appeared that binuclear copper complexes are the active species as in some copper-containing enzymes. By applying the very strongly chelating TMED we were able to isolate crystals of the catalyst and to determine its structure by X-ray diffraction (13). Figure 1 shows this structure for the TMED complex of basic copper chloride Cu(0H)Cl prepared from CuCl by oxidation in moist pyridine. [Pg.10]

It is well known that 2,6-dimethylphenol is oxidatively polymerized to poly(2,6-dimethyl-l,4-phenyleneoxide) with a copper amine complex as catalyst in the presence of oxygen at room temperature (Eq. 1)... [Pg.175]

For the recyclability of catalyst 1, after completion of the oxidation of 4-methoxybenzyl alcohol, the reaction mixmre was treated with water (3 mL), and the organic layer, after drying (Na2S04) and GC analysis, was passed through a short pad of silica gel using ethyl acetate and hexane as eluent to afford analytically pure 4-methoxybenzaldehyde in quantitative yield. Evaporation of the aqueous layer afforded the copper complex 1 that was subsequently reused for the oxidation of 4-methoxybenzyl alcohol up to three times using fresh TEMPO whereupon no loss of activity was observed. [Pg.186]

Infrared spectra of propene and isobutene on different catalysts were measured by Gorokhovatskii [143]. Copper oxide, which converts olefins to butadiene and aldehydes, shows adsorption complexes different from structures on a V2Os—P2Os catalyst which produces maleic acid anhydride. Differences also exist between selective oxidation catalysts and total oxidation catalysts. The latter show carbonate and formate bands, in contrast to selective oxides for which 7r-allylic species are indicated. A difficulty in this type of work is that only a few data are available under catalytic conditions most of them refer to a pre-catalysis situation. Therefore it is not certain that complexes observed are relevant for the catalytic action. [Pg.251]

When 2,6-dimelhylphenol is oxidized with oxygen in the presence of an amine complex of a copper salt as catalyst a high-molecular weight polyether (PPO) is formed. [Pg.1342]

Copper-catalyzed oxidations of phenols by dioxygen have attracted considerable interest owing to their relevance to enzymic tyrosinases (which transform phenols into o-quinones equation 24) and laccases (which dimerize or polymerize diphenols),67 and owing to their importance for the synthesis of specialty polymers [poly(phenylene oxides)]599 and fine chemicals (p-benzoquinones, muconic acid). A wide variety of oxidative transformations of phenols can be accomplished in the presence of copper complexes, depending on the reaction conditions, the phenol substituents and the copper catalyst.56... [Pg.391]

Copper complexes are particularly effective catalysts for the oxidative cleavage of enamines (equation 284)613-615 and 3-substituted indoles (equation 285)6 6,617 under extremely mild conditions ( 0°C). [Pg.394]


See other pages where Copper complexes oxidation catalysts is mentioned: [Pg.565]    [Pg.272]    [Pg.7215]    [Pg.312]    [Pg.355]    [Pg.446]    [Pg.181]    [Pg.181]    [Pg.182]    [Pg.187]    [Pg.190]    [Pg.83]    [Pg.158]    [Pg.163]    [Pg.246]    [Pg.466]    [Pg.178]    [Pg.228]    [Pg.105]    [Pg.111]    [Pg.113]    [Pg.33]    [Pg.45]    [Pg.50]    [Pg.66]    [Pg.209]    [Pg.885]    [Pg.718]    [Pg.729]    [Pg.1186]   
See also in sourсe #XX -- [ Pg.340 , Pg.389 ]

See also in sourсe #XX -- [ Pg.340 , Pg.389 ]

See also in sourсe #XX -- [ Pg.6 , Pg.340 , Pg.389 ]




SEARCH



Catalysts copper oxide

Copper catalyst

Copper complexes catalyst

Copper complexes oxides

Copper oxidized

Oxidants copper

Oxidation copper complexes

Oxidative copper complexes

Oxidative coppering

Oxidative coupling copper-polymer complex catalysts

Oxidic copper

© 2024 chempedia.info