Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper carbonate, oxidant

On heating, the basic carbonate readily yields the black copper(II) oxide. [Pg.411]

Oxidation with Benedict s reagent (Section 25 19) Sugars that con tain a free hemiacetal function are called reducing sugars They react with copper(ll) sulfate in a sodium citrate/sodium carbonate buffer (Benedict s reagent) to form a red precipitate of copper(l) oxide Used as a qualitative test for reducing sugars... [Pg.1063]

Because the synthesis reactions are exothermic with a net decrease in molar volume, equiUbrium conversions of the carbon oxides to methanol by reactions 1 and 2 are favored by high pressure and low temperature, as shown for the indicated reformed natural gas composition in Figure 1. The mechanism of methanol synthesis on the copper—zinc—alumina catalyst was elucidated as recentiy as 1990 (7). For a pure H2—CO mixture, carbon monoxide is adsorbed on the copper surface where it is hydrogenated to methanol. When CO2 is added to the reacting mixture, the copper surface becomes partially covered by adsorbed oxygen by the reaction C02 CO + O (ads). This results in a change in mechanism where CO reacts with the adsorbed oxygen to form CO2, which becomes the primary source of carbon for methanol. [Pg.275]

Palladium and platinum (5—10 wt % on activated carbon) can be used with a variety of solvents as can copper carbonate on siHca and 60 wt % nickel on kieselguhr. The same is tme of nonsupported catalysts copper chromite, rhenium (VII) sulfide, rhenium (VI) oxide, and any of the Raney catalysts, copper, iron, or nickel. [Pg.200]

Cupric chloride or copper(II) chloride [7447-39 ], CUCI2, is usually prepared by dehydration of the dihydrate at 120°C. The anhydrous product is a dehquescent, monoclinic yellow crystal that forms the blue-green orthohombic, bipyramidal dihydrate in moist air. Both products are available commercially. The dihydrate can be prepared by reaction of copper carbonate, hydroxide, or oxide and hydrochloric acid followed by crystallization. The commercial preparation uses a tower packed with copper. An aqueous solution of copper(II) chloride is circulated through the tower and chlorine gas is sparged into the bottom of the tower to effect oxidation of the copper metal. Hydrochloric acid or hydrogen chloride is used to prevent hydrolysis of the copper(II) (11,12). Copper(II) chloride is very soluble in water and soluble in methanol, ethanol, and acetone. [Pg.253]

Coppet(II) oxide [1317-38-0] CuO, is found in nature as the black triclinic tenorite [1317-92-6] or the cubic or tetrahedral paramelaconite [71276-37 ]. Commercially available copper(II) oxide is generally black and dense although a brown material of low bulk density can be prepared by decomposition of the carbonate or hydroxide at around 300°C, or by the hydrolysis of hot copper salt solutions with sodium hydroxide. The black product of commerce is most often prepared by evaporation of Cu(NH2)4C02 solutions (35) or by precipitation of copper(II) oxide from hot ammonia solutions by addition of sodium hydroxide. An extremely fine (10—20 nm) copper(II) oxide has been prepared for use as a precursor in superconductors (36). [Pg.254]

Copper(II) oxide is less often prepared by pyrometaHurgical means. Copper metal heated in air to 800°C produces the copper(II) oxide. Decomposition of nitrates, carbonates, and hydroxides at various temperatures also occurs. [Pg.254]

Copper(II) oxide is insoluble in water, but readily dissolves in mineral acid or in hot formic or acetic acids. CuO slowly dissolves in ammonia solution, but alkaline ammonium carbonate solubilizes it quickly. [Pg.254]

Calcium carbonate has normal pH and inverse temperature solubilities. Hence, such deposits readily form as pH and water temperature rise. Copper carbonate can form beneath deposit accumulations, producing a friable bluish-white corrosion product (Fig. 4.17). Beneath the carbonate, sparkling, ruby-red cuprous oxide crystals will often be found on copper alloys (Fig. 4.18). The cuprous oxide is friable, as these crystals are small and do not readily cling to one another or other surfaces (Fig. 4.19). If chloride concentrations are high, a white copper chloride corrosion product may be present beneath the cuprous oxide layer. However, experience shows that copper chloride accumulation is usually slight relative to other corrosion product masses in most natural waters. [Pg.73]

Cupri-. cupric, copper(II). -azetst, n. cupric acetate, copper(II) acetate, -carbonat, n. cupric carbonate, copper(II) carbonate, -chlorid, n. cupric chloride, copper(II) chloride. -hydroxyd, n. cupric hydroxide, cop-per(II) hydroxide. -ion, n. cupric ion, copper(II) ion. -ozalat, n. cupric oxalate, copper(II) oxalate, -oxyd, n. cupric oxide, copper(II) oxide. -salz, n. cupric salt, copper(II) salt, -suifat, n. cupric sulfate. copper(II) sulfate, -sulfid, n. cupric sulfide, copper(II) sulfide, -verbihdung, /. cupric compound, copper(II) compound, -wein-saure, /. cupritartaric acid. [Pg.94]

Polyhydric Alcohols. (Polyols). An alcohol with three or more hydroxyl groups, each attached to a different carbon atom. They are w-sol and of sweetish taste, which tends to intensify with increasing hydroxyl content. Examples of polyols of ordn interest are listed below. Polyvinyl alcohol is considered in a separate entry as a polymer although it is defined as a polyhydric alcohol. Polyols, when nitrated, make excellent expls, proplnt binders, plasticizers, etc. Prepn can follow the procedure of Lenth DuPuis (Ref 3) which uses a methanol suspension of either sucrose or dextrose and a special Cu-Al oxide catalyst to yield 60-65% distillable polyols at 240° and 1500psi Refs 1) Beil — refs found under individual compds 2) CA, under Alcohols, Polyhydric for compds of current ordn interest 3) C.W. Lenth R.N. DuPuis, "Polyhydric Alcohol Production by Hydrogenolysis of Sugars in the Presence of Copper-Aluminum Oxide , IEC 37, 152-57 (1945) CA 39, 1391 (1945)... [Pg.818]

Modification of the burning rates, pressure exponents, and temp coefficients of burning rate of the fluorocarbon composites has been accomplished with copper, lead, tin, sodium, ammonium and potassium fluoborates sodium, potassium, lithium, lead, copper and calcium fluorides potassium and ammonium dichromate lead and zinc stearate cesium carbonate potassium and ammonium sulfate copper chromite oxides of magnesium, copper and manganese boron zinc dust and carbon black (Ref 75)... [Pg.890]

Typically the internals of the coil show pits and pinholes and may even perforate. Corrosion debris is evident, usually containing green hydrated copper carbonate (CuC03 nH20) and red cuprous oxide (Cu20). [Pg.176]

Problems with heating coils Internal coil corrosion Note corrosion debris is green hydrated copper carbonate Cu[11IC03 nH20 red cuprous oxide Cu20 /ntemal coil deposition Acid corrosion from soft water. Pinhole corrosion from 02 and C02. Erosion corrosion over 6 ft/s flow. Hard water scale from hard water. [Pg.188]

Copper(II) oxide Zinc(II) oxide Magnesium oxide Cobalt(II) hydroxide Cobalt(II) carbonate Calcium aliuninosilicate glasses Gelatinizing minerals ... [Pg.6]

Zirconium reduces almost all oxygen-containing salts. This is the case for alkali hydroxides (accidents with the lithium, sodium and potassium compounds) and zirconium hydroxide, lithium, sodium and potassium carbonates, alkaline sulphates sodium tetraborate and copper (II) oxide. This is true especially for oxidising salts such as alkaline chromates and dichromates, chlorates (accident with potassium salt) and nitrates (accident with potassium salt). [Pg.217]

The enthalpy of absorption of 1- and 2-nitropropane on breathing mask cartridges made with carbon is such that the decomposition of the nitrated derivative can cause its ignition. This accident is aggravated when the cartridge also contains metal oxides such as copper (II) oxide or manganese dioxide. [Pg.295]

Zheng X-C, Wu S-Fl, Wang S-P, Wang S-R, Zheng S-M, Huang W-P (2005) The preparation and catalytic behavior of copper-cerium oxide catalysts for low-temperature carbon monoxide oxidation. Appl Catal A 283(l-2) 217-223... [Pg.313]

The heat of adsorption of 2-nitropropane is very high, so carbon-containing respirators should not be used in high vapour concentrations. Also, if Hopcalite catalyst (co-precipitated copper(II) oxide and manganese (IV) oxide) is present in the respirator cartridge, ignition may occur. [Pg.450]

Copper compounds are used routinely and widely to control freshwater snails that serve as intermediate vectors of schistosomiasis and other diseases that afflict humans (Hasler 1949 NAS 1977 Rowe and Prince 1983 Winger etal. 1984 Al-Sabri etal. 1993). These compounds include copper sulfate, copper pentachlorophenate, copper carbonate, copper-tartaric acid, Paris green (copper arsenite-acetate), copper oxide, copper chloride, copper acetyl acetonate, copper dimethyl dithiocar-bamate, copper ricinoleate, and copper rosinate (Cheng 1979). Also, many species of oyster enemies are controlled by copper sulfate dips. All tested species of marine gastropods, tunicates, echinoderms, and crabs that had been dipped for 5 seconds in a saturated solution of copper sulfate died if held in air for as little as a few seconds to 8 h mussels, however, were resistant (MacKenzie 1961). [Pg.130]

The initial research work on oxide zinc flotation dates back to the 1930s at the University of Liege, Belgium [7]. This research work was based on the earned experience of flotation of oxide copper ores. Fatty acids, which are good collectors for copper carbonates, were not applicable because the gangue minerals in the zinc oxide ores were also floatable in the presence of fatty acids. [Pg.72]


See other pages where Copper carbonate, oxidant is mentioned: [Pg.204]    [Pg.411]    [Pg.446]    [Pg.421]    [Pg.425]    [Pg.339]    [Pg.348]    [Pg.258]    [Pg.775]    [Pg.76]    [Pg.354]    [Pg.429]    [Pg.541]    [Pg.15]    [Pg.213]    [Pg.40]    [Pg.220]    [Pg.231]    [Pg.1925]    [Pg.37]    [Pg.38]    [Pg.394]    [Pg.132]    [Pg.204]    [Pg.411]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Copper carbonate

Copper oxidized

Oxidants copper

Oxidative coppering

Oxidic copper

© 2024 chempedia.info