Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ratio Control Systems

Several parameters come into the relation between density and equivalence ratio. Generally, the variations act in the following sense a too-dense motor fuel results in too lean a mixture causing a potential unstable operation a motor fuel that is too light causes a rich mixture that generates greater pollution from unburned material. These problems are usually minimized by the widespread use of closed loop fuel-air ratio control systems installed on new vehicles with catalytic converters. [Pg.188]

The conceptually simplest approach towards controlling systems by laser field is by teaching the field [188. 191. 192 and 193]. Typically, tire field is experimentally prepared as, for example, a sum of Gaussian pulses with variable height and positions. Each experiment gives an outcome which can be quantified. Consider, for example, an A + BC reaction where the possible products are AB + C and AC + B if the AB + C product is preferred one would seek to optimize the branching ratio... [Pg.2321]

Extensive efforts have been made to develop catalyst systems to control the stereochemistry, addition site, and other properties of the final polymers. Among the most prominant ones are transition metal-based catalysts including Ziegler or Ziegler-Natta type catalysts. The metals most frequentiy studied are Ti (203,204), Mo (205), Co (206-208), Cr (206-208), Ni (209,210), V (205), Nd (211-215), and other lanthanides (216). Of these, Ti, Co, and Ni complexes have been used commercially. It has long been recognized that by varying the catalyst compositions, the trans/cis ratio for 1,4-additions can be controlled quite selectively (204). Catalysts have also been developed to control the ratio of 1,4- to 1,2-additions within the polymers (203). [Pg.346]

An ethylene plant contains more than 300 equipment items. Traditionally, operators were trained at the site alongside experienced co-workers. With the advent of modem computers, the plant operation can be simulated on a real-time basis, and the results displayed on monitors (107). Computers are used in a modem plant to control the entire operation, eg, they are used to control the heaters and the recovery section (108). A weU-controUed plant is much more profitable than a poorly controlled plant. For the heaters, a model-based control system is gaining importance (109). Instead of simply controlling the coil outlet temperature (COT), severity is actually controlled. The measurement of severity (either or C H /CH ratio) requires on-line effluent... [Pg.444]

Thermal energy, power generation, and incineration have several factors in common. All rely on combustion, which causes the release of air pollutants all exhaust their emissions at elevated temperatures and all produce large quantities of ash when they consume solid or residual fuels. The ratio of the energy used to control pollution to the gross energy produced can be a deciding factor in the selection of the control system. These processes have important differences which influence the selection of specific systems and devices for individual facilities. [Pg.490]

Minimization of pollutants from the combustion chamber. This approach consists of designing the engine with improved fuel-air distribution systems, ignition timing, fuel-air ratios, coolant and mixture temperatures, and engine speeds for minimum emissions. The majority of automobiles sold in the United States now use an electronic sensor/control system to adjust these variables for maximum engine performance with minimum pollutant emissions. [Pg.525]

ASME Power Test Code, 417 ASME Pressure Vessel Code, 315, 316 ASME, standard atmospheric conditions, 21 Aspect ratio, 227 Atlas Copco, 96 Automatic control systems, 356, 357... [Pg.543]

Fig. 4.41 Angular positional control system. = Error detector gain (V/rad) K2 = Amplifier gain (A/V) Kj = Motor constant (Nm/A) n = Gear ratio Hi = Tachogenerator constant (Vs/rad) H = Load moment of inertia (kg m ) Q = Load damping coefficient (Nms/rad). Fig. 4.41 Angular positional control system. = Error detector gain (V/rad) K2 = Amplifier gain (A/V) Kj = Motor constant (Nm/A) n = Gear ratio Hi = Tachogenerator constant (Vs/rad) H = Load moment of inertia (kg m ) Q = Load damping coefficient (Nms/rad).
Electronic ratio controller. In this type of controller, a proportion of both gas and air is diverted through a bypass in which a thermistor sensor measures the flow. The air and gas flows can be compared and the ratio calculated and displayed. A ratio control valve in the air or gas supply, depending on whether the mode of operation is gas- or air-led, will automatically restore a deviation from the pre-set ratio. The electronic controller maintains ratio over a 19 1 turndown. The principle of operation is based on mass flow, so that it can be used with preheated air in recuperative systems. [Pg.278]

The development of reliable zirconia cells which can measure the gas analysis in situ without recourse to gas-sampling techniques has led to systems which provide feedback to the air/fuel ratio control system. [Pg.378]

The objective of this phase of the methanation system s operation is to determine space velocity requirements, recycle ratio, and analytical and control systems. [Pg.145]

Boiler control systems include combustion controls, superheat steam temperature controls and FW controls. Control systems are used to maintain steam pressure, boiler load, drum water levels, and fuel-air ratios. [Pg.122]

Embedded in such models, in which variations were developed [12] are further detailed. The laminar burning velocity is expressed as a function of fuel type, fuel/ air ratio, level of exhaust gas recirculation, pressure, temperature, etc. Furthermore, submodels have been developed to describe the impact of engine speed, port-flow control systems, in-cylinder gross-flow motion (i.e., swirl, tumble, squish), and turbulent fluctuations u. Thus, with a wider knowledge base of the parametric impact of external variables, successful modeling of... [Pg.180]

The arrival of integrated circuits with very good performance/price ratios and relatively low-cost microprocessors and memories has had a profound influence on many areas of technical endeavour. Also in the measurement and control field, modem electronic circuits were introduced on a large scale leading to very sophisticated systems and novel solutions. However, in these measurement and control systems, quite often sensors and actuators were applied that were conceived many decades ago. Consequently, it became necessary to improve these devices in such a way that their performance/price ratios would approach that of modem electronic circuits. [Pg.406]

With the new VME/UNIX control system on the polarised hot-neutron normal-beam diffractometer D3 at ILL, each measurement cycle for both peak and background intensities lasts 2 s, and the (+)/(-) counting-time fractions are defined with a 1 MHz clock. There are two detector scalers and two monitor scalers ((+) and (-) states). In Table 1, we compare the flipping ratio measured for the strong 200 and the weak 600 Bragg peak reflections of a CoFe sample. As expected, the standard deviation cr (if) is improved in the case of the strong reflection (16%). [Pg.250]

In some commercial devices, the proportional gain is defined as the ratio of the percent controller output to the percent controlled variable change [%/%]. In terms of the control system block diagram that we will go through in the next section, we just have to add gains to do the unit conversion. [Pg.84]

Example 7.5A Consider the second order system in Example 7.5 (p. 7-9), what should the proportional gain be if we specify the controlled system to have a damping ratio of 0.7 ... [Pg.139]

Hence, our first step is to use root locus to find the closed-loop poles of a PI control system with a damping ratio of 0.8. The MATLAB statements to continue with Example 4.7B are ... [Pg.180]

There are many advanced strategies in classical control systems. Only a limited selection of examples is presented in this chapter. We start with cascade control, which is a simple introduction to a multiloop, but essentially SISO, system. We continue with feedforward and ratio control. The idea behind ratio control is simple, and it applies quite well to the furnace problem that we use as an illustration. Finally, we address a multiple-input multiple-output system using a simple blending problem as illustration, and use the problem to look into issues of interaction and decoupling. These techniques build on what we have learned in classical control theories. [Pg.189]

Working load. The efficiency drops off quickly as the load decreases. The more the load is decreased from 100% rated capacity, the steeper is the decline in the machine performance. The decline in performance depends on the machine and the control system. For example, at 70% of full load, the ratio of the part-load efficiency to the efficiency at full-load might vary typically between 0.95 and 0.85, depending on the machine and the control system. Twin-spool machines have a better part-load performance than single-shaft machines. Part-load performance depends on the size of the machine. [Pg.478]

Equation 23.25 has the same basic form as the linear Willans Line Equation used to model steam turbines. The basic assumption behind the use of Equation 23.25 is that the gas turbine would need to have a control system that would maintain a fixed fuel-to-air ratio and steam-to-air ratio at part-load. [Pg.479]

Since the uncertainty of the CHF predictions determines the safety margin of the protection systems and control systems for limiting the operating power of a reactor, the critical power ratio evaluated in (a) or (b) represents a realistic parameter for ensuring a proper safety margin. The simple CHF ratio as defined in (c) is rather too optimistic from a reactor safety point of view. [Pg.482]

Development of automated batch process control systems has lagged behind that of continuous process control. Flexible factory scale commercial systems have only begun to appear in the last five years (1-4). Increases in the performance/price ratio of small computers are now making automation of laboratory scale batch processes more practical. [Pg.179]


See other pages where Ratio Control Systems is mentioned: [Pg.60]    [Pg.41]    [Pg.352]    [Pg.465]    [Pg.7]    [Pg.78]    [Pg.79]    [Pg.89]    [Pg.483]    [Pg.494]    [Pg.729]    [Pg.1304]    [Pg.2509]    [Pg.102]    [Pg.57]    [Pg.230]    [Pg.278]    [Pg.23]    [Pg.137]    [Pg.592]    [Pg.665]    [Pg.8]    [Pg.199]    [Pg.429]    [Pg.168]   
See also in sourсe #XX -- [ Pg.230 ]




SEARCH



Ratio control

© 2024 chempedia.info