Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Control oscillating behaviors

In the present chapter, steady state, self-oscillating and chaotic behavior of an exothermic CSTR without control and with PI control is considered. The mathematical models have been explained in part one, so it is possible to use a simplified model and a more complex model taking into account the presence of inert. When the reactor works without any control system, and with a simple first order irreversible reaction, it will be shown that there are intervals of the inlet flow temperature and concentration from which a small region or lobe can appears. This lobe is not a basin of attraction or a strange attractor. It represents a zone in the parameters-plane inlet stream flow temperature-concentration where the reactor has self-oscillating behavior, without any periodic external disturbance. [Pg.244]

The values of Km and T2d from Eq.(36) can be obtained from the transfer function of the linearized model at the equilibrium point, applying conventional methods from the linear control theory (see [1]). In order to investigate the self-oscillating behavior, one can determine the linearized system at the equilibrium point, and the corresponding complex eigenvalues with zero real part, when the parameters Km and of the PI controller are varied. For example, taking into account Eq.(34), the Jacobian matrix of the linearized system at dimensionless set point temperature xs is the following ... [Pg.264]

Note that Figure 13 can be used to compare the parameters of the controller when they are obtained from the Ziegler-Nichols or Cohen-Coom rules. On the other hand, at Figure 14 it can be observed that the outlet dimensionless flow rate and the reactor volume reaches the steady state whereas the dimensionless reactor temperature remains in self-oscillation. The knowledge of the self-oscillation regime in a CSTR is important, both from theoretical and experimental point of view, because there is experimental evidence that the self-oscillation behavior can be useful in an industrial environment. [Pg.265]

Nonanalytic Nonlinearities.—A somewhat different kind of nonlinearity has been recognized in recent years, as the result of observations on the behavior of control systems. It was observed long ago that control systems that appear to be reasonably linear, if considered from the point of view of their differential equations, often exhibit self-excited oscillations, a fact that is at variance with the classical theory asserting that in linear systems self-excited oscillations are impossible. Thus, for instance, in the van der Pol equation... [Pg.389]

Achieving steady-state operation in a continuous tank reactor system can be difficult. Particle nucleation phenomena and the decrease in termination rate caused by high viscosity within the particles (gel effect) can contribute to significant reactor instabilities. Variation in the level of inhibitors in the feed streams can also cause reactor control problems. Conversion oscillations have been observed with many different monomers. These oscillations often result from a limit cycle behavior of the particle nucleation mechanism. Such oscillations are difficult to tolerate in commercial systems. They can cause uneven heat loads and significant transients in free emulsifier concentration thus potentially causing flocculation and the formation of wall polymer. This problem may be one of the most difficult to handle in the development of commercial continuous processes. [Pg.10]

This set of first-order ODEs is easier to solve than the algebraic equations where all the time derivatives are zero. The initial conditions are that a ut = no, bout = bo,... at t = 0. The long-time solution to these ODEs will satisfy Equations (4.1) provided that a steady-state solution exists and is accessible from the assumed initial conditions. There may be no steady state. Recall the chemical oscillators of Chapter 2. Stirred tank reactors can also exhibit oscillations or more complex behavior known as chaos. It is also possible that the reactor has multiple steady states, some of which are unstable. Multiple steady states are fairly common in stirred tank reactors when the reaction exotherm is large. The method of false transients will go to a steady state that is stable but may not be desirable. Stirred tank reactors sometimes have one steady state where there is no reaction and another steady state where the reaction runs away. Think of the reaction A B —> C. The stable steady states may give all A or all C, and a control system is needed to stabilize operation at a middle steady state that gives reasonable amounts of B. This situation arises mainly in nonisothermal systems and is discussed in Chapter 5. [Pg.120]

Microbial kinetics can be quite complex. Multiple steady states are always possible, and oscillatory behavior is common, particularly when there are two or more microbial species in competition. The term chemostat can be quite misleading for a system that oscillates in the absence of a control system. [Pg.457]

Steriade, M. (1999). Cellular substrates of oscillations in corticothalamic systems during states of vigilance. In Handbook of Behavioral State Control, Cellular and Molecular Mechanisms, ed. R. Lydic H. A. Baghdoyan, pp. 327-48. New York, NY CRC Press. [Pg.142]

Recently there has been a growing emphasis on the use of transient methods to study the mechanism and kinetics of catalytic reactions (16, 17, 18). These transient studies gained new impetus with the introduction of computer-controlled catalytic converters for automobile emission control (19) in this large-scale catalytic process the composition of the feedstream is oscillated as a result of a feedback control scheme, and the frequency response characteristics of the catalyst appear to play an important role (20). Preliminary studies (e.g., 15) indicate that the transient response of these catalysts is dominated by the relaxation of surface events, and thus it is necessary to use fast-response, surface-sensitive techniques in order to understand the catalyst s behavior under transient conditions. [Pg.80]

More recently, the problem of self-oscillation and chaotic behavior of a CSTR with a control system has been considered in others papers and books [2], [3], [8], [9], [13], [14], [20], [21], [27]. In the previously cited papers, the control strategy varies from simple PID to robust asymptotic stabilization. In these papers, the transition from self-oscillating to chaotic behavior is investigated, showing that there are different routes to chaos from period doubling to the existence of a Shilnikov homoclinic orbit [25], [26]. It is interesting to remark that in an uncontrolled CSTR with a simple irreversible reaction A B it does not appear any homoclinic orbit with a saddle point. Consequently, Melnikov method cannot be applied to corroborate the existence of chaotic dynamic [34]. [Pg.244]

Self-oscillation and Chaotic Behavior of a CSTR Without Feedback Control... [Pg.247]

It is well known that a nonlinear system with an external periodic disturbance can reach chaotic dynamics. In a CSTR, it has been shown that the variation of the coolant temperature, from a basic self-oscillation state makes the reactor to change from periodic behavior to chaotic one [17]. On the other hand, in [22], it has been shown that it is possible to reach chaotic behavior from an external sine wave disturbance of the coolant flow rate. Note that a periodic disturbance can appear, for instance, when the parameters of the PID controller which manipulates the coolant flow rate are being tuned by using the Ziegler-Nichols rules. The chaotic behavior is difficult to obtain from normal... [Pg.247]

It is interesting to note that in chaotic regime, the flow rate outlet stream, which is manipulated by the control valve CVl (see Figure 12), and the reactor volume, are driven by the PI controller to the equilibrium point without chaotic oscillations. However, the other variables have a chaotic behavior as shown in Figure 18. So it is possible to obtain a reactor behavior, in which some variables are in steady state and the others are in regime of chaotic oscillations, due to the decoupling or serial connection phenomena. In this case the control system and the volumetric flow limitation of coolant flow rate through the control valve VC2, are the responsible of this behavior. Similar results can be obtained from model. [Pg.272]

From the results presented in this chapter, more advanced studies from the bifurcation theory can be planed. For example, inside the lobe, the behavior of the reactor is self-oscillating, i.e. an Andronov-Poincare-Hopf bifurcation can be researched from the calculation of the first Lyapunov value, in order to know if a weak focus may appear, or the conditions which give a Bogdanov-Takens bifurcation etc. Finally, it is interesting to remark that the previously analyzed phenomena should be known by the control engineer in order to either avoid them or use them, depending on the process type. [Pg.273]


See other pages where Control oscillating behaviors is mentioned: [Pg.75]    [Pg.169]    [Pg.61]    [Pg.229]    [Pg.30]    [Pg.37]    [Pg.270]    [Pg.225]    [Pg.366]    [Pg.119]    [Pg.119]    [Pg.132]    [Pg.17]    [Pg.140]    [Pg.88]    [Pg.2113]    [Pg.409]    [Pg.152]    [Pg.723]    [Pg.1342]    [Pg.911]    [Pg.347]    [Pg.295]    [Pg.248]    [Pg.856]    [Pg.60]    [Pg.344]    [Pg.74]    [Pg.101]    [Pg.243]    [Pg.281]    [Pg.282]    [Pg.283]    [Pg.293]    [Pg.299]   
See also in sourсe #XX -- [ Pg.119 ]




SEARCH



Behavioral control

© 2024 chempedia.info