Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Control enantiomeric

This idea is elegant for its simplicity and also for its usefulness. While often in phenomenological theories of materials, control of parameters with molecular structure would provide useful properties, but the parameters are not related in any obvious way to controllable molecular structural features. Meyer s idea, however, is just the opposite. Chemists have the ability to control enantiomeric purity and thus can easily create an LC phase lacking reflection symmetry. In the case of the SmC, the macroscopic polar symmetry of this fluid phase can lead to a macroscopic electric dipole, and such a dipole was indeed detected by Meyer and his collaborators in a SmC material, as reported in 1975.2... [Pg.465]

In contrast to Mori s synthesis, Pawar and Chattapadhyay used enzymatically controlled enantiomeric separation as the final step [300]. Butanone H was converted into 3-methylpent-l-en-3-ol I. Reaction with trimethyl orthoacetate and subsequent Claisen-orthoester rearrangement yielded ethyl (E)-5-methyl-hept-4-enoate K. Transformation of K into the aldehyde L, followed by reaction with ethylmagnesium bromide furnished racemic ( )-7-methylnon-6-ene-3-ol M. Its enzyme-catalysed enantioselective transesterification using vinylacetate and lipase from Penicillium or Pseudomonas directly afforded 157, while its enantiomer was obtained from the separated alcohol by standard acetylation. [Pg.141]

Yamamura M, Suzuki S, Hattori T et al (2010) Subunit composition of hinokiresinol synthase controls enantiomeric selectivity in hinokiresinol formation. Org Biomol Chem 8 1106-1110 Hirose Y, Oishi N, Nagaki H et al (1965) The structure of hinokiresinol. Tetrahedron Lett 41 3665-3668... [Pg.194]

Sequence Chain End Control Enantiomeric Site Control Two-Parameter Nonsymmetric Chains Hemiisotactic Polymers ... [Pg.22]

Abstract It is well known that spontaneous deracemization or spontaneous chiral resolution occasionally occurs when racemic molecules are crystallized. However, it is not easy to believe such phenomenon will occur when forming liquid crystal phases. Spontaneous chiral domain formation is introduced, when molecules form particular liquid crystal phases. Such molecules possess no chiral carbon but may have axial chirality. However, the potential barrier between two chiral states is low enough to allow mutual transformation even at room temperature. Therefore the systems are essentially not racemic but nonchiral or achiral. First, enhanced chirality by doping chiral nematic liquid crystals with nonchiral molecules is described. Emphasis is made on ester molecules for their anomalous behavior. Second, spontaneous chiral resolution is discussed. Three examples with rod-, bent-, and diskshaped molecules are shown to give such phenomena. Particular attention will be paid to controlling enantiomeric excess (ee). Actually, almost 100% ee was obtained by applying some external chiral stimuli. This is very noteworthy in the sense that we can create chiral molecules (chiral field) without using any chiral species. [Pg.303]

Chiral resolution on polysaccharide-based CSPs is sensitive, and therefore, the optimization of HPLC conditions on these phases is very important. The most important factors that control enantiomeric resolution are the composition, pH, and flow rate of the mobile phase and parameters, including temperature and solute structure. The optimization of these parameters on polysaccharide-based CSPs is discussed next. [Pg.60]

Separation of enantiomers is a technique driven mainly by the needs of pharmaceutical industry to produce drugs with controlled enantiomeric purity. Enantiomeric separation involves more than knowledge of chromatography it requires an in-depth assessment of the stereochemistry of enantiomeric analytes and chiral stationary phase, as well as the interactions involved therein. In this situation, chromatography is just a tool that helps to separate enantiomers. That is why this chapter presents the main types of interactions occurring between the selectands and the selectors. Understanding these relationships, chiral separation becomes a logical process and trial and error is minimized. [Pg.1040]

Scheme 7, Use of the Sharpless asymmetric epoxidation reaction to achieve the synthesis of hydroxy epoxide 30 through kinetically controlled enantiomeric enrichment. Scheme 7, Use of the Sharpless asymmetric epoxidation reaction to achieve the synthesis of hydroxy epoxide 30 through kinetically controlled enantiomeric enrichment.
Among chiral dialkylboranes, diisopinocampheylborane (8) is the most important and best-studied asymmetric hydroborating agent. It is obtained in both enantiomeric forms from naturally occurring a-pinene. Several procedures for its synthesis have been developed (151—153). The most convenient one, providing product of essentially 100% ee, involves the hydroboration of a-pinene with borane—dimethyl sulfide in tetrahydrofuran (154). Other chiral dialkylboranes derived from terpenes, eg, 2- and 3-carene (155), limonene (156), and longifolene (157,158), can also be prepared by controlled hydroboration. A more tedious approach to chiral dialkylboranes is based on the resolution of racemates. /n j -2,5-Dimethylborolane, which shows excellent enantioselectivity in the hydroboration of all principal classes of prochiral alkenes except 1,1-disubstituted terminal double bonds, has been... [Pg.311]

Preparation of enantiomerically enriched materials by use of chiral catalysts is also based on differences in transition-state energies. While the reactant is part of a complex or intermediate containing a chiral catalyst, it is in a chiral environment. The intermediates and complexes containing each enantiomeric reactant and a homochiral catalyst are diastereomeric and differ in energy. This energy difference can then control selection between the stereoisomeric products of the reaction. If the reaction creates a new stereogenic center in the reactant molecule, there can be a preference for formation of one enantiomer over the other. [Pg.92]

Enantioselective processes involving chiral catalysts or reagents can provide sufficient spatial bias and transition state organization to obviate the need for control by substrate stereochemistry. Since such reactions do not require substrate spatial control, the corresponding transforms are easier to apply antithetically. The stereochemical information in the retron is used to determine which of the enantiomeric catalysts or reagents are appropriate and the transform is finally evaluated for chemical feasibility. Of course, such transforms are powerful because of their predictability and effectiveness in removing stereocenters from a target. [Pg.51]

Ironically, auxiliary-induced control via the alkene failed to generate synthetically useful selectivities, but direct substrate-induced control did. In particular, chiral silyl enol ethers with stereocenters in the y-position allowed the synthesis of enantiomerically... [Pg.47]

Addition of p-tert-butylthiophenol 178 to the racemic furanone 168 in dry toluene, and in the presence of quinidine as a chiral catalyst, provided (/ )-168 together with the Michael adduct 179. The enantiomeric excess of the recovered furanone (R)-168 was determined via the addition of (/)-Q -methylbenzylamine This amine addition showed complete diastereofacial control to give the adduct 180 in quantitative yield (Scheme 50) (94T4775). [Pg.137]

The use of chiral dipolarophiles, such as the nitrile oxide additions to chiral furanones, have received much interest. The cycloaddition of various 1,3-dipolar reagents to the enantiomeric ally pure furanones 170 and 227 showed excellent diastereofacial control by the menthyloxy substituent, especially in nitrone and nitrile oxide additions (cf. Table II) (88TL5317). [Pg.145]

The enantiomeric distribution can be very useful for identifying adulterated foods and beverages, for controlling and monitoring fermentation processes and products, and evaluating age and storage effects (1). [Pg.218]

Due to the nature of the SMB process, in-process samples of the unwanted enantiomer and the enantiopure drug substance can be sampled at controlled times during the continuous process to assess the enantiomeric and chemical purity. One can monitor the process without system shutdown by diverting either the extract or the raffinate streams. Further monitoring of the receiving tanks can also be accomplished. [Pg.277]

Determination of the drug substance is expected to be enantioselective, and this may be achieved by including a chiral assay in the specification or an achiral assay together with appropriate methods of controlling the enantiomeric impurity. For a drug product where racemization does not occur during manufacture or storage, an achiral assay may suffice. If racemization does happen, then a chiral assay should be used or an achiral method combined with a validated procedure to control the presence of the other enantiomer. [Pg.335]

In light of the previous discussions, it would be instructive to compare the behavior of enantiomerically pure allylic alcohol 12 in epoxidation reactions without and with the asymmetric titanium-tartrate catalyst (see Scheme 2). When 12 is exposed to the combined action of titanium tetraisopropoxide and tert-butyl hydroperoxide in the absence of the enantiomerically pure tartrate ligand, a 2.3 1 mixture of a- and /(-epoxy alcohol diastereoisomers is produced in favor of a-13. This ratio reflects the inherent diasteieo-facial preference of 12 (substrate-control) for a-attack. In a different experiment, it was found that SAE of achiral allylic alcohol 15 with the (+)-diethyl tartrate [(+)-DET] ligand produces a 99 1 mixture of /(- and a-epoxy alcohol enantiomers in favor of / -16 (98% ee). [Pg.296]

If we consider natural synthetic processes, enzymes are seen to exert complete control over the enantiomeric purity of biomolecules (see Figure 8.2). They are able to achieve this because they are made of single enantiomers of amino adds. The resulting enantiomer of the enzymes functions as a template for the synthesis of only one enantiomer of the product Moreover, the interaction of an enzyme with the two enantiomers of a given substrate molecule will be different. Biologically important molecules often show effective activity as one enantiomer, the other is at best ineffective or at worst detrimental. [Pg.237]

Reaction of racemic a-alkyl-a-(l H-1,2,4-triazol-l-yl)acetophenones with Grignard reagents in boiling diethyl ether affords exclusively the (RS/S -enantiomeric pairs. On the other hand, reaction of racemic a-alkoxy-x-(17/-l,2,4-triazol-l-yl)acetophenonc with Grignard reagents leads, under chelation control, to the (R/ /5S)-enantiomeric pair82. [Pg.96]

The reactions with (25,35,45,55)-5-(tm-butyldimethylsilyloxy)-3-(4-methoxyphenylmethoxy)-2,4-dimethylheptanal (15) are particularly informative reagent (5)-3 is incapable of overriding the intrinsic diastereofacial preference of 15, and the normal Felkin product 17 is obtained with >95% selectivity. In contrast, reagent-controlled mismatched double diastereoselectivity is evident in the reaction with (5)-4 that provides 16 as the major component of a 73 22 5 mixture. The minor product 18 apparently derives from a reaction with the contaminating (/ )-4, since (5)-4 that was used is not enantiomerically pure. [Pg.333]


See other pages where Control enantiomeric is mentioned: [Pg.183]    [Pg.304]    [Pg.323]    [Pg.137]    [Pg.115]    [Pg.183]    [Pg.304]    [Pg.323]    [Pg.137]    [Pg.115]    [Pg.296]    [Pg.708]    [Pg.323]    [Pg.75]    [Pg.309]    [Pg.10]    [Pg.337]    [Pg.91]    [Pg.296]    [Pg.218]    [Pg.229]    [Pg.53]    [Pg.321]    [Pg.325]    [Pg.336]    [Pg.234]    [Pg.295]    [Pg.297]    [Pg.499]    [Pg.702]    [Pg.41]    [Pg.67]    [Pg.219]    [Pg.315]   
See also in sourсe #XX -- [ Pg.60 , Pg.68 , Pg.70 ]




SEARCH



Enantiomeric purity, control

Principles of Electric-Dipole-Allowed Enantiomeric Control

© 2024 chempedia.info