Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Achiral methods

Determination of the drug substance is expected to be enantioselective, and this may be achieved by including a chiral assay in the specification or an achiral assay together with appropriate methods of controlling the enantiomeric impurity. For a drug product where racemization does not occur during manufacture or storage, an achiral assay may suffice. If racemization does happen, then a chiral assay should be used or an achiral method combined with a validated procedure to control the presence of the other enantiomer. [Pg.335]

Chromatography. Under certain conditions, even homochiral and het-erochiral self-assemblies can be separated by achiral methods. Thus, chromatography of partially resolved enantiomers can cause depletion or enrichment of enantiomers on achiral stationary phases with an achiral mobile phase. 14C-Labeled nicotine was first resolved into its enantiomers by high-performance liquid chromatography (HPLC) on an achiral stationary phase (Partisil-ODS or -SCX) through coinjection with optically active nicotine (59). This observation was followed by resolution of a number of chiral compounds by chromatography (<50-62) (Scheme 34). When a chiral diamide in 74% ee was separated on a Kieselgel 60... [Pg.346]

Counter-ions, usually small polar or ionic compounds, are routinely used to enhance the aqueous solubility and/or stability of the API. Because of their polarity, counter-ions are rarely resolved from the chromatographic solvent front in reversed-phase HPLC and have characteristically poor chromophores which makes detection difficult. The counter-ion can be omitted from the achiral method development sample set with minimal risk when this holds true. Analysis of counter-ions is normally performed using ion chromatography.9,10 This assay is separate from the reversed-phase assay performed to measure organic impurity levels. [Pg.147]

Need to determine whether the achiral method is specific for diastereomers or geometric MUST... [Pg.148]

For compounds with one or more stereocenters, it is prudent to screen the key samples (10-20% degradation timepoint) with the current chiral purity method to determine if the degradation pathway is stereospecific. From the achiral method development perspective, stereospecific degradation pathways will not affect the outcome of the method development process, but this information can affect the impurity control strategy for the compound. [Pg.154]

Method development on CSPs by GC differs from traditional achiral methods in achieving and optimizing selectivity. The chiral resolution of environmental pollutants in GC is controlled by many parameters. The most important factors are the temperature of the column, the type of CSP,... [Pg.206]

For APIs being developed as a single enantiomer, control of the other enantiomer is required on stability if the desired enantiomer is prone to conversion to the undesired form. A suitable method should be used to test the API. The combination of an achiral method and an appropriate method for controlling enantiometric purity is also acceptable. Chapter 1 details the various techniques and approaches to the determination of chirality. An achiral method may also be acceptable when the drug chemistry degradation studies have shown that recemization is not a significant degradation pathway. [Pg.484]

Clearly, there is a need for techniques which provide access to enantiomerically pure compounds. There are a number of methods by which this goal can be achieved . One can start from naturally occurring enantiomerically pure compounds (the chiral pool). Alternatively, racemic mixtures can be separated via kinetic resolutions or via conversion into diastereomers which can be separated by crystallisation. Finally, enantiomerically pure compounds can be obtained through asymmetric synthesis. One possibility is the use of chiral auxiliaries derived from the chiral pool. The most elegant metliod, however, is enantioselective catalysis. In this method only a catalytic quantity of enantiomerically pure material suffices to convert achiral starting materials into, ideally, enantiomerically pure products. This approach has found application in a large number of organic... [Pg.77]

Merrifield method See solid phase peptide synthesis Meso stereoisomer (Section 7 11) An achiral molecule that has chirality centers The most common kind of meso com pound IS a molecule with two chirality centers and a plane of symmetry... [Pg.1288]

Three general methods exist for the resolution of enantiomers by Hquid chromatography (qv) (47,48). Conversion of the enantiomers to diastereomers and subsequent column chromatography on an achiral stationary phase with an achiral eluant represents a classical method of resolution (49). Diastereomeric derivatization is problematic in that conversion back to the desired enantiomers can result in partial racemization. For example, (lR,23, 5R)-menthol (R)-mandelate (31) is readily separated from its diastereomer but ester hydrolysis under numerous reaction conditions produces (R)-(-)-mandehc acid (32) which is contaminated with (3)-(+)-mandehc acid (33). [Pg.241]

Chromatographic Method. Progress in the development of chromatographic techniques (55), especially, in high performance Hquid chromatography, or hplc, is remarkable (56). Today, chiral separations are mainly carried out by three hplc methods chiral hplc columns, achiral hplc columns together with chiral mobile phases, and derivatization with optical reagents and separation on achiral columns. All three methods are usehil but none provides universal appHcation. [Pg.279]

Achiral Columns Together with Chiral Mobile Phases. Ligand-exchange chromatography for chiral separation has been introduced (59), and has been appHed to the resolution of several a-amino acids. Prior derivatization is sometimes necessary. Preparative resolutions are possible, but the method is sensitive to small variations in the mobile phase and sometimes gives poor reproducibiUty. [Pg.279]

Derivatization with Optically Active Reagents and Separation on Achiral Columns. This method has been reviewed (65) a great number of homochiral derivatizing agents (HD A) are described together with many appHcations. An important group is the chloroformate HD As. The reaction of chloroformate HD As with racemic, amino-containing compounds yields carbamates, which are easily separated on conventional hplc columns, eg (66),... [Pg.279]

A second method uses sodium periodate (NaI04) as the oxidant in the presence of the readily available protein bovine serum albumin. In this procedure, the sulfide is complexed in the chiral envirorunent of the protein. Although the oxidant is achiral, it encounters the sulfide in a chiral envirorunent in which the two faces of the sulfide are differentiated. [Pg.108]

In the synthesis of polymers it is very important to control the configuration of the multiple stereogenic centers but free radical methods generally fail to give significant stereochemical control (96T(52)4181). To compare the effects of several chiral and achiral auxiliary groups, acrylamides of type 110 were studied. [Pg.83]

These early studies on zinc carbenoids provide an excellent foundation for the development of an asymmetric process. The subsequent appearance of chiral auxiliary and reagent-based methods for the selective formation of cyclopropanes was an outgrowth of a clear understanding of the achiral process. However, the next important stage in the development of catalytic enantioselective cyclopropanations was elucidation of the structure of the Simmons-Smith reagent. [Pg.90]

The l ,J -DBFOX/Ph-transition metal aqua complex catalysts should be suitable for the further applications to conjugate addition reactions of carbon nucleophiles [90-92]. What we challenged is the double activation method as a new methodology of catalyzed asymmetric reactions. Therein donor and acceptor molecules are both activated by achiral Lewis amines and chiral Lewis acids, respectively the chiral Lewis acid catalysts used in this reaction are J ,J -DBFOX/Ph-transition metal aqua complexes. [Pg.291]

The importance of chemical syntheses of a-amino acids on industrial scale is limited by the fact that the standard procedure always yields the racemic mixture (except for the achiral glycine H2N-CH2-COOH and the corresponding amino acid from symmetrical ketones R-CO-R). A subsequent separation of the enantiomers then is a major cost factor. Various methods for the asymmetric synthesis of a-amino acids on laboratory scale have been developed, and among these are asymmetric Strecker syntheses as well. ... [Pg.271]

Derivatization of a racemic compound with an achiral group may play an important role in the analysis of a chiral compound (Fig. 7-15). In the case of substances with low or no UV-activity, the compounds can be rendered detectable by introducing an UV-absorbing or fluorescent group. If the racemate itself shows selectivity on a chiral stationary phase (CSP), this method can be applied to reduce the limit of detection. Examples have been reported in the literature, especially for the derivatization of amino acids which are difficult to detect using UV detection. Different derivatization strategies can be applied (Fig. 7-16). [Pg.198]

The problem that we noted above with clusters appears also in chemical enumeration when we consider compounds formed by attaching radicals which may be chiral or achiral to a frame which is achiral. In this case, too, Polya s Theorem cannot be used, but the problem can be solved by the appropriate use of Burnside s Lemma. It is also amenable to the methods of Redfield, as shown in [DavRSl] and [LloE85]. [Pg.130]


See other pages where Achiral methods is mentioned: [Pg.325]    [Pg.334]    [Pg.302]    [Pg.302]    [Pg.302]    [Pg.304]    [Pg.511]    [Pg.2127]    [Pg.146]    [Pg.140]    [Pg.381]    [Pg.466]    [Pg.412]    [Pg.138]    [Pg.170]    [Pg.78]    [Pg.325]    [Pg.334]    [Pg.302]    [Pg.302]    [Pg.302]    [Pg.304]    [Pg.511]    [Pg.2127]    [Pg.146]    [Pg.140]    [Pg.381]    [Pg.466]    [Pg.412]    [Pg.138]    [Pg.170]    [Pg.78]    [Pg.241]    [Pg.242]    [Pg.244]    [Pg.32]    [Pg.96]    [Pg.26]    [Pg.91]    [Pg.126]    [Pg.3]    [Pg.305]    [Pg.321]    [Pg.331]    [Pg.340]   
See also in sourсe #XX -- [ Pg.359 ]




SEARCH



Achiral Versus Chiral Methods

Achiral assay methods

Achiral purity methods

Achirality

© 2024 chempedia.info