Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Continuous stirred tank reactors, kinetic data

Over 25 years ago the coking factor of the radiant coil was empirically correlated to operating conditions (48). It has been assumed that the mass transfer of coke precursors from the bulk of the gas to the walls was controlling the rate of deposition (39). Kinetic models (24,49,50) were developed based on the chemical reaction at the wall as a controlling step. Bench-scale data (51—53) appear to indicate that a chemical reaction controls. However, flow regimes of bench-scale reactors are so different from the commercial furnaces that scale-up of bench-scale results caimot be confidently appHed to commercial furnaces. For example. Figure 3 shows the coke deposited on a controlled cylindrical specimen in a continuous stirred tank reactor (CSTR) and the rate of coke deposition. The deposition rate decreases with time and attains a pseudo steady value. Though this is achieved in a matter of rninutes in bench-scale reactors, it takes a few days in a commercial furnace. [Pg.438]

Experimental data that are most easily obtained are of (C, t), (p, t), (/ t), or (C, T, t). Values of the rate are obtainable directly from measurements on a continuous stirred tank reactor (CSTR), or they may be obtained from (C, t) data by numerical means, usually by first curve fitting and then differentiating. When other properties are measured to follow the course of reaction—say, conductivity—those measurements are best converted to concentrations before kinetic analysis is started. [Pg.688]

In 1991, Lima Neto, Pardey, Ford and coworkers121 reported a detailed kinetics investigation of the RhCl3 catalyst in aqueous picoline using a continuously stirred tank reactor (CSTR). Some of the data are tabulated in Table 31. The activation energy (80-120 °C) was 7.4 kcal/mol (31 kJ/mol). [Pg.162]

Kinetic Data from Continuous Stirred-Tank Reactors... [Pg.50]

The use of a precision digital density meter as supplied by Mettler Instruments (Anton Paar, Ag.) appeared attractive. Few references on using density measurements to follow polymerization or other reactions appear in the literature. Poehlein and Dougherty (2) mentioned, without elaboration, the occasional use of y-ray density meters to measure conversion for control purposes in continuous emulsion polymerization. Braun and Disselhoff (3) utilized an instrument by Anton Paar, Ag. but only in a very limited fashion. More recently Rentsch and Schultz(4) also utilized an instrument by Anton Paar, Ag. for the continuous density measurement of the cationic polymerization of 1,3,6,9-tetraoxacycloundecane. Ray(5) has used a newer model Paar digital density meter to monitor emulsion polymerization in a continuous stirred tank reactor train. Trathnigg(6, 7) quite recently considered the solution polymerization of styrene in tetrahydrofuran and discusses the effect of mixing on the reliability of the conversion data calculated. Two other references by Russian authors(8,9) are known citing kinetic measurements by the density method but their procedures do not fulfill the above stated requirements. [Pg.344]

The rational design of a reaction system to produce a desired polymer is more feasible today by virtue of mathematical tools which permit one to predict product distribution as affected by reactor type and conditions. New analytical tools such as gel permeation chromatography are beginning to be used to check technical predictions and to aid in defining molecular parameters as they affect product properties. The vast majority of work concerns bulk or solution polymerization in isothermal batch or continuous stirred tank reactors. There is a clear need to develop techniques to permit fuller application of reaction engineering to realistic nonisothermal systems, emulsion systems, and systems at high conversion found industrially. A mathematical framework is also needed which will start with carefully planned experimental data and efficiently indicate a polymerization mechanism and statistical estimates of kinetic constants rather than vice-versa. [Pg.18]

Polystyrene can be easily prepared by emulsion or suspension techniques. Harkins (1 ), Smith and Ewart(2) and Garden ( ) have described the mechanisms of emulsTon polymerization in batch reactors, and the results have been extended to a series of continuous stirred tank reactors (CSTR)( o Much information on continuous emulsion reactors Ts documented in the patent literature, with such innovations as use of a seed latex (5), use of pulsatile flow to reduce plugging of the tube ( ), and turbulent flow to reduce plugging (7 ). Feldon (8) discusses the tubular polymerization of SBR rubber wTth laminar flow (at Reynolds numbers of 660). There have been recent studies on continuous stirred tank reactors utilizing Smith-Ewart kinetics in a single CSTR ( ) as well as predictions of particle size distribution (10). Continuous tubular reactors have been examined for non-polymeric reactions (1 1 ) and polymeric reactions (12.1 31 The objective of this study was to develop a model for the continuous emulsion polymerization of styrene in a tubular reactor, and to verify the model with experimental data. [Pg.367]

With respect to benzaldehyde, (R)-oxynitrilase exhibits saturation kinetics (Michaelis Menten kinetics, see Sect. 7.4.2.1) and a maximum reaction rate is reached above a concentration of about 5 mmol L 1. The chemical reaction presents a linear increase of the reaction rate with increasing benzaldehyde concentration, representing first order kinetics, when the concentration of HCN is kept constant (see Fig. 7-13). As a consequence the enzymatic reaction becomes more dominating at lower concentrations of the substrate benzaldehyde (for HCN as substrate the same kinetic behavior occurs, data not shown). Accordingly an enzyme reactor would be suitable that works under minimum average substrate concentrations. These requirements are satisfied by the continuous stirred tank reactor (CSTR). In Sect. 7.5.2.1 this aspect of enzyme reaction engineering will be discussed further. [Pg.201]

The rate expression for Fiseher-Tropseh (FT) synthesis has been obtained using a 25 wt.% C0/AI2O3 eatalyst in a 1 liter continuously stirred tank reactor (CSTR) operated at 493K, 1.99 MPa (19.7 atm), H2/CO feed ratios of 1.0-2.4 with varying space velocities to produce 14-63% CO eonversion. Adjusting the ratios of inert gas and added water permitted the impact of added water to be made at the same total flow rate and H2 and CO partial pressures. The addition of water at low levels during FT sjmthesis did not impact CO conversion but at higher levels it decreased CO conversion relative to the same conditions without water addition. The catalytic activity recovered after water addition was terminated. The temporary reversible decline in CO conversion when water was added may be due to the kinetic effect of water by inhibition of CO and/or H2 adsorption. The data of this study are fitted fairly well by a simple power law expression of the form ... [Pg.289]

Second, it is possible to plot the data in time-independent form to obtain curves that are useful in the determination of 2/ 1 in studies of reaction kinetics. The experimental points are matched with one of the families of curves on plots corresponding to the type of reactor used in the investigation. Figure 9.6 is an example of this type of plot for a continuous stirred-tank reactor. [Pg.281]

Gradientless differential reactors allow evaluation of kinetic data practically free of distortion by heat/temperature effects. Depending on the flow, a distinction is made between reactors with outer and inner circulation (recycle reactor, continuous stirred tank reactor. Figure 4.11.1). Evaluation of kinetic measurements by means of the differential method is straightforward as the algebraic balance equation for a stirred tank reactor can be applied (prerequisite high recycle ratio R). In practice it is found that recycle ratios of more than 10 are sufficient to achieve practically ideal... [Pg.380]

Although little valuable kinetic information is obtainable from published data on flow systems, an autoclave operated continuously under conditions approaching perfect mixing, i.e., a continuous stirred tank reactor (CSTR). can be a useful source of kinetic data (42). Recently van der Molen published rate data obtained in a CSTR (43). [Pg.402]

In the previous sections, the use of surfactants to increase the rate of desorption of hydrophobic organic contaminants was discussed. For the current study, several different surfactants were tested to determine whether the rate of TCE desorption from a peat soil could be increased. The effects of the surfactants on the rate of TCE desorption was tested using a continuous-flow stirred-tank reactor (CFSTR) methodology. The observed data were simulated using a distributed-rate kinetic desorption model. The parameters determined from the model simulation were then use to discern the effects of the surfactants on the rate of TCE desorption from the peat soil. The experimental methodology and the modeling procedure are now described in detail. [Pg.226]

Real kinetics data To date, almost all the kinetics data on reaction systems in liquid phase or multiphase with liquid as the continuous phase have been measured in traditional stirred tank reactors. From the results reported in this chapter, it is likely that significant deviations exist in the existing kinetics data. On the other hand, the LIS device cannot yet be considered as absolutely ideal for kinetics investigation, not least because its micromixing time, tM, is not zero. What then is the ideal equipment and conditions for obtaining real kinetics data ... [Pg.267]

In a study of the nitration of toluene by mixed acids, the following data were obtained in a continuous-flow stirred-tank reactor. It had been previously determined that the reactor was well mixed the composition within the reactor and in the exit stream can be considered equal. In addition, it had been determined that mass-transfer effects were not limiting the process rate. Thus the rate measured is the true kinetic rate of reaction. Calculate that rate. [Pg.155]

The simplicity and general utility of the Madon-Boudart criterion make it one of the most important experimental tests to confirm that kinetic data are free from artifacts. It can be used for heterogeneous catalytic reactions carried out in batch, continuous stirred tank, and tubular plug flow reactors. [Pg.230]

When carrying out a gas-liquid reaction, the gas may be dispersed in the liquid, as in bubble-column reactors or stirred tanks, or the gas phase may be continuous, as in spray contactors or trickle-bed reactors. The fundamental kinetics are independent of the reactor type, but the reaction rate per unit volume and the selectivity may differ because of differences in surface area, mass transfer coefficient, and extent of mixing. In the following sections, gas holdup and mass transfer correlations and other performance data for gas liquid reactors are reviewed and some problems of scaleup are discussed. [Pg.288]


See other pages where Continuous stirred tank reactors, kinetic data is mentioned: [Pg.561]    [Pg.24]    [Pg.2]    [Pg.444]    [Pg.402]    [Pg.569]    [Pg.542]    [Pg.438]    [Pg.64]    [Pg.195]    [Pg.29]    [Pg.1056]    [Pg.7]    [Pg.789]    [Pg.115]    [Pg.341]    [Pg.292]    [Pg.243]    [Pg.265]    [Pg.204]    [Pg.528]    [Pg.1]    [Pg.472]    [Pg.38]    [Pg.87]    [Pg.262]   
See also in sourсe #XX -- [ Pg.50 ]




SEARCH



Continuous data

Continuous stirred reactor

Continuous stirred tank reactor

Continuous stirring tank reactor

Continuously stirred tank

Continuously stirred tank reactor

Kinetic data from continuous stirred-tank reactors

Reactor kinetics

Reactor stirred

Reactors stirred tank reactor

Reactors stirring

Stirred continuous

Stirred tank reactors

Tank reactor

Tank reactor reactors

© 2024 chempedia.info