Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Continuous amounts

Most petrochemical processes are essentially enclosed and normally vent only a small amount of fugitive emissions. However, the petrochemical processes that use air-oxidation-type reactions normally vent large, continuous amounts of gaseous emissions to the atmosphere (10). Six major petrochemical processes employ reactions using air oxidation. Table 30-5 lists the atmospheric emissions from these processes along with applicable control measures. [Pg.499]

The regulation of vascular tone has been dealt with previously in this chapter as it was the first description of NO generation in a physiological role. The generation of continuous amounts of NO from endothelial cells allows relaxation of the vessels and the control of both local and systemic blood pressure. [Pg.80]

The extension of Gillespie s algorithm to spatially distributed systems is straightforward. A lattice is used to represent binding sites of adsorbates, which correspond to local minima of the potential energy surface. The discrete nature of KMC coupled with possible separation of time scales of various processes could render KMC inefficient. The work of Bortz et al. on the n-fold or continuous time MC CTMC) method can lead to computational speedup of the KMC method, which, however, has been underutilized most probably because of its difficult implementation. This method classifies all atoms in a finite number of classes according to their transition probability. Probabilities are computed a priori and each event is successful, in contrast to the Metropolis method (and other null event algorithms) whose fraction of unsuccessful (null) events increases drastically at low temperatures and for stiff problems. In conjunction with efficient search within a class and dynamic variation of atom coordi-nates, " the CPU time can be practically independent of lattice size. After each event, the time is incremented by a continuous amount. [Pg.1718]

To maintain the flow, a suitable and continuous amount of work must be performed. The plane moving fastest continually loses kinetic energy. Hence, the molecules in this layer will lose a part of their forward momentum by transfer of kinetic energy in a direction perpendicular to that of flow. This liberation of kinetic energy does not constitute an equivalent gain to the adjacent plane rather it causes a temperature increase, because friction converts the mechanical energy into heat. [Pg.273]

In a batch process, the main steps operate discontinuously. In contrast with a continuous process, a batch process does not deliver its product continuously but in discrete amounts. This means that... [Pg.115]

The objective of any exploration venture is to find new volumes of hydrocarbons at a low cost and in a short period of time. Exploration budgets are in direct competition with acquisition opportunities. If a company spends more money finding oil than it would have had to spend buying the equivalent amount in the market place there is little Incentive to continue exploration. Conversely, a company which manages to find new reserves at low cost has a significant competitive edge since it can afford more exploration, find and develop reservoirs more profitably, and can target and develop smaller prospects. [Pg.15]

Typical recovery factors for gas field development are in the range 50 to 80 percent, depending on the continuity and quality of the reservoir, and the amount of compression installed (i.e. how low an abandonment pressure can be achieved). [Pg.198]

The amount of detail input, and the type of simulation model depend upon the issues to be investigated, and the amount of data available. At the exploration and appraisal stage it would be unusual to create a simulation model, since the lack of data make simpler methods cheaper and as reliable. Simulation models are typically constructed at the field development planning stage of a field life, and are continually updated and increased in detail as more information becomes available. [Pg.206]

As stated in the introduction to the previous chapter, adsorption is described phenomenologically in terms of an empirical adsorption function n = f(P, T) where n is the amount adsorbed. As a matter of experimental convenience, one usually determines the adsorption isotherm n = fr(P), in a detailed study, this is done for several temperatures. Figure XVII-1 displays some of the extensive data of Drain and Morrison [1]. It is fairly common in physical adsorption systems for the low-pressure data to suggest that a limiting adsorption is being reached, as in Fig. XVII-la, but for continued further adsorption to occur at pressures approaching the saturation or condensation pressure (which would be close to 1 atm for N2 at 75 K), as in Fig. XVII-Ih. [Pg.599]

For both first-order and continuous phase transitions, finite size shifts the transition and rounds it in some way. The shift for first-order transitions arises, crudely, because the chemical potential, like most other properties, has a finite-size correction p(A)-p(oo) C (l/A). An approximate expression for this was derived by Siepmann et al [134]. Therefore, the line of intersection of two chemical potential surfaces Pj(T,P) and pjj T,P) will shift, in general, by an amount 0 IN). The rounding is expected because the partition fiinction only has singularities (and hence produces discontinuous or divergent properties) in tlie limit i—>oo otherwise, it is analytic, so for finite Vthe discontinuities must be smoothed out in some way. The shift for continuous transitions arises because the transition happens when L for the finite system, but when i oo m the infinite system. The rounding happens for the same reason as it does for first-order phase transitions whatever the nature of the divergence in thennodynamic properties (described, typically, by critical exponents) it will be limited by the finite size of the system. [Pg.2266]

Now if K is very small, the amount of X going into the ether layer will also be very small and it would be quite impracticable to carry out more than three or four extractions. This difficulty can, however, be easily overcome by employing continuous ether extraction using the apparatus shown in Fig. 17 (a). [Pg.36]

When the volume of mother liquor is large and the amount of crystals small, the apparatus of Fig. II, 32, 1 may be used. The large pear-shaped receiver is supported on a metal ring attached to a stand. When the receiver is about two-thirds fuU, atmospheric pressure is restored by suitably rotating the three-way stopcock the filtrate may then be removed by opening the tap at the lower end. The apparatus is again exhausted and the filtration continued. [Pg.131]

To carry out a steam distillation, the solution (or mixture or the solid with a little water) is placed in the flask B, and the apparatus is completely assembled. Steam is passed into the flask B, which is itself heated by means of a small flame to prevent too rapid an accumulation of water, at such a rate that it is completely condensed by the condenser C. The passage of steam is continued until there is no appreciable amount of water-insoluble material in the distillate. If the substance crystallises... [Pg.146]

Hexamethylene glycol, HO(CH2)gOH. Use 60 g. of sodium, 81 g. of diethyl adipate (Sections 111,99 and III,100) and 600 ml. of super-d ethyl alcohol. All other experimental detaUs, including amounts of water, hydrochloric acid and potassium carbonate, are identical with those for Telramelhylene Glycol. The yield of hexamethylene glycol, b.p. 146-149°/ 7 mm., is 30 g. The glycol may also be isolated by continuous extraction with ether or benzene. [Pg.251]

Into a 750 ml. round-bottomed flask furnished with a reflux condenser place a solution of 34 g. (18-5 ml.) of concentrated sulphuric acid in 100 ml, of water add 33 g. of di-n-butyl cyanamide and a few fragments of porous porcelain. Reflux gently for 6 hours. Cool the resulting homogeneous solution and pour in a cold solution of 52 g. of sodium hydroxide in 95 ml. of water down the side of the flask so that most of it settles at the bottom without mixing with the solution in the flask. Connect the flask with a condenser for downward distillation and shake it to mix the two layers the free amine separates. Heat the flask when the amine with some water distils continue the distillation until no amine separates from a test portion of the distillate. Estimate the weight of water in the distillate anp add about half this amount of potassium hydroxide in the form of sticks, so that it dissolves slowly. [Pg.419]

Fit a 1500 ml. bolt-head flask with a reflux condenser and a thermometer. Place a solution of 125 g. of chloral hydrate in 225 ml. of warm water (50-60°) in the flask, add successively 77 g. of precipitated calcium carbonate, 1 ml. of amyl alcohol (to decrease the amount of frothing), and a solution of 5 g. of commercial sodium cyanide in 12 ml. of water. An exothermic reaction occurs. Heat the warm reaction mixture with a small flame so that it reaches 75° in about 10 minutes and then remove the flame. The temperature will continue to rise to 80-85° during 5-10 minutes and then falls at this point heat the mixture to boiling and reflux for 20 minutes. Cool the mixture in ice to 0-5°, acidify with 107-5 ml. of concentrated hydrochloric acid. Extract the acid with five 50 ml. portions of ether. Dry the combined ethereal extracts with 10 g. of anhydrous sodium or magnesium sulphate, remove the ether on a water bath, and distil the residue under reduced pressure using a Claiseii flask with fractionating side arm. Collect the dichloroacetic acid at 105-107°/26 mm. The yield is 85 g. [Pg.431]

Oxidation of benzoin with concentrated nitric acid or by catalytic amounts of cupric salts in acetic acid solution, which are regenerated continuously by ammonium nitrate, yields the diketone benzil ... [Pg.709]


See other pages where Continuous amounts is mentioned: [Pg.535]    [Pg.353]    [Pg.11]    [Pg.535]    [Pg.120]    [Pg.461]    [Pg.147]    [Pg.11]    [Pg.314]    [Pg.535]    [Pg.353]    [Pg.11]    [Pg.535]    [Pg.120]    [Pg.461]    [Pg.147]    [Pg.11]    [Pg.314]    [Pg.367]    [Pg.272]    [Pg.1487]    [Pg.1877]    [Pg.1907]    [Pg.1973]    [Pg.143]    [Pg.227]    [Pg.573]    [Pg.601]    [Pg.16]    [Pg.156]    [Pg.490]    [Pg.79]    [Pg.9]    [Pg.35]    [Pg.254]    [Pg.603]    [Pg.646]    [Pg.680]    [Pg.737]    [Pg.770]    [Pg.795]   
See also in sourсe #XX -- [ Pg.307 ]




SEARCH



© 2024 chempedia.info