Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Construction of interface

In the field of biomimetic chemistry, phospholipid molecules have been utilized for the preparation of cell membrane-like stractures, namely, liposomes and Langmuir-Blodgett membranes. However, a major disadvantage of molecular assemblies of this kind is their inadequate chemical and/or physical stability. Stabilization of the phospholipid assembly is therefore an important topic of focus in the construction of interfaces between living and artificial systems. One approach to addressing this issue is the design of a new type of polymer system with PC groups. [Pg.326]

We noted in Section VII-2B that, given the set of surface tension values for various crystal planes, the Wulff theorem allowed the construction of fhe equilibrium or minimum firee energy shape. This concept may be applied in reverse small crystals will gradually take on their equilibrium shape upon annealing near their melting point and likewise, small air pockets in a crystal will form equilibrium-shaped voids. The latter phenomenon offers the possible advantage that adventitious contamination of the solid-air interface is less likely. [Pg.280]

Submitting a structure to a calculation can be expensive in terms of human time and effort. HyperChem lets you build and display molecules easily. Since HyperChem contains a graphical interface, you can monitor the construction of molecules. [Pg.8]

Another problem in the construction of tlrese devices, is that materials which do not play a direct part in the operation of the microchip must be introduced to ensure electrical contact between the elecuonic components, and to reduce the possibility of chemical interactions between the device components. The introduction of such materials usually requires an annealing phase in the construction of die device at a temperature as high as 600 K. As a result it is also most probable, especially in the case of the aluminium-silicon interface, that thin films of oxide exist between the various deposited films. Such a layer will act as a banier to inter-diffusion between the layers, and the transport of atoms from one layer to the next will be less than would be indicated by the chemical potential driving force. At pinholes in the AI2O3 layer, aluminium metal can reduce SiOa at isolated spots, and form the pits into the silicon which were observed in early devices. The introduction of a tlrin layer of platinum silicide between the silicon and aluminium layers reduces the pit formation. However, aluminium has a strong affinity for platinum, and so a layer of clrromium is placed between the silicide and aluminium to reduce the invasive interaction of aluminium. [Pg.220]

Figure 17.10 Construction of a two helix truncated Z domain, (a) Diagram of the three-helix bundle Z domain of protein A (blue) bound to the Fc fragment of IgG (green). The third helix stabilizes the two Fc-binding helices, (b) Three phage-display libraries of the truncated Z-domaln peptide were selected for binding to the Fc. First, four residues at the former helix 3 interface ("exoface") were sorted the consensus sequence from this library was used as the template for an "intrafece" library, in which residues between helices 1 and 2 were randomized. The most active sequence from this library was used as a template for five libraries in which residues on the Fc-binding face ("interface") were randomized. Colored residues were randomized blue residues were conserved as the wild-type amino acid while yellow residues reached a nonwild-type consensus, [(b) Adapted from A.C. Braisted and J.A. Wells,... Figure 17.10 Construction of a two helix truncated Z domain, (a) Diagram of the three-helix bundle Z domain of protein A (blue) bound to the Fc fragment of IgG (green). The third helix stabilizes the two Fc-binding helices, (b) Three phage-display libraries of the truncated Z-domaln peptide were selected for binding to the Fc. First, four residues at the former helix 3 interface ("exoface") were sorted the consensus sequence from this library was used as the template for an "intrafece" library, in which residues between helices 1 and 2 were randomized. The most active sequence from this library was used as a template for five libraries in which residues on the Fc-binding face ("interface") were randomized. Colored residues were randomized blue residues were conserved as the wild-type amino acid while yellow residues reached a nonwild-type consensus, [(b) Adapted from A.C. Braisted and J.A. Wells,...
The line = 0 can be considered as a borderline for applicability of the basic model, in which the Gaussian curvature is always negative. Recall that in the basic model the oil-water interface is saturated by the surfactant molecules by construction of the model. Hence, for equal oil and water volume fractions the Gaussian curvature must be negative, by the definition of the model. [Pg.735]

This type of interface is not easy to construct and therefore reliance has to be put on commercial manufacturers. [Pg.140]

A large number of potential applications for organized protein monolayers have recently motivated considerable research activity in this field (Boussaad et al. 1998, Kiselyova et al. 1999). Construction of specific interaction-directed, self-assembled protein films has been performed at the air-water interface. The Langmuir-Blodgett (LB) technique has been extensively used to order and immobilize natural proteins on solid surfaces (Tronin et... [Pg.143]

Particularly attractive for numerous bioanalytical applications are colloidal metal (e.g., gold) and semiconductor quantum dot nanoparticles. The conductivity and catalytic properties of such systems have been employed for developing electrochemical gas sensors, electrochemical sensors based on molecular- or polymer-functionalized nanoparticle sensing interfaces, and for the construction of different biosensors including enzyme-based electrodes, immunosensors, and DNA sensors. Advances in the application of molecular and biomolecular functionalized metal, semiconductor, and magnetic particles for electroanalytical and bio-electroanalytical applications have been reviewed by Katz et al. [142]. [Pg.340]

Construction of Nanostructures by use of Magnetic Fields and Spin Chemistry in Solid/Liquid Interfaces... [Pg.259]

Figures 21(a) and 21(b) show the SEM micrographs of the freeze-fractured cross-section of the film used in the construction of the bag. There are two distinct layers and possibly a third very much thinner tie layer. The outside layer is a layer of nominal thickness 13 pm. The inside layer is much thicker and is approximately 70 pm thick. At the interface between the outer and inner layers the apparent very thin tie layer is about 1 pm thick. This is too thin to be identified by FUR microscopy on a cross-section of the sample, since the technique is diffraction-limited, which means that layers of about 10 pm thickness or greater can only be readily identified [1]. The tie layer thickness is also probably too thin for fingerprinting by Raman microspectroscopy on a cross-section the lateral spatial resolution of Raman microspectroscopy is about 1-2 pm. Figures 21(a) and 21(b) show the SEM micrographs of the freeze-fractured cross-section of the film used in the construction of the bag. There are two distinct layers and possibly a third very much thinner tie layer. The outside layer is a layer of nominal thickness 13 pm. The inside layer is much thicker and is approximately 70 pm thick. At the interface between the outer and inner layers the apparent very thin tie layer is about 1 pm thick. This is too thin to be identified by FUR microscopy on a cross-section of the sample, since the technique is diffraction-limited, which means that layers of about 10 pm thickness or greater can only be readily identified [1]. The tie layer thickness is also probably too thin for fingerprinting by Raman microspectroscopy on a cross-section the lateral spatial resolution of Raman microspectroscopy is about 1-2 pm.
The construction of the optoelectronic interface can be based on a silicon photodiode since analytical and reference wavelengths are from the visible and the IR regions, respectively. The signals can be filtered out by optical filters (then two photodiodes are required) or one photodiode can be synchronised with modulation waves of the LEDs used. Finally, silica optical fibres can be used as light waveguides. The choice between single fibre or bundle is determined by the application of the sensor. [Pg.58]

Biomaterials are inert substances that are used in contact with living tissue, resulting in an interface between living and non-living substances [45,46], Biocompatibility of this interface is achieved by using such biomaterials for encapsulation in the construction of sensor devices. [Pg.293]

Metal/metal oxides are the materials of choice for construction of all-solid-state pH microelectrodes. A further understanding of pH sensing mechanisms for metal/metal oxide electrodes will have a significant impact on sensor development. This will help in understanding which factors control Nemstian responses and how to reduce interference of the potentiometric detection of pH by redox reactions at the metal-metal oxide interface. While glass pH electrodes will remain as a gold standard for many applications, all-solid-state pH sensors, especially those that are metal/metal oxide-based microelectrodes, will continue to make potentiometric in-vivo pH determination an attractive analytical method in the future. [Pg.319]

The layout of an ICP-MS is shown schematically in Figure 8.17 and comprises three essential parts the ICP torch, the interface and the mass spectrometer. The ICP torch differs little from that discussed earlier and the mass spectrometer is very similar to those used for organic mass spectrometry and discussed in Chapter 9. Typically a quadrupole instrument would be used. The construction of the interface is shown in Figure 8.18 and is based on the use of a pair of water-cooled cones which divert a portion of the sample stream into the ion optics of the mass spectrometer whence the mass spectrum is produced by standard mass spectrometer operation. Some modern instruments also incorporate a so-... [Pg.308]

Many naturally occurring substances, in particular the oxide films that form spontaneously on some metals, are semiconductors. Also, electrochemical reactions are used in the production of semiconductor chips, and recently semiconductors have been used in the construction of electrochemical photocells. So there are good technological reasons to study the interface between a semiconductor and an electrolyte. Our main interest, however, lies in more fundamental questions How does the electronic structure of the electrode influence the properties of the electrochemical interface, and how does it affect electrochemical reactions What new processes can occur at semiconductors that are not known from metals ... [Pg.81]


See other pages where Construction of interface is mentioned: [Pg.260]    [Pg.85]    [Pg.1431]    [Pg.3317]    [Pg.260]    [Pg.85]    [Pg.1431]    [Pg.3317]    [Pg.351]    [Pg.802]    [Pg.323]    [Pg.240]    [Pg.265]    [Pg.56]    [Pg.131]    [Pg.240]    [Pg.757]    [Pg.67]    [Pg.46]    [Pg.59]    [Pg.771]    [Pg.76]    [Pg.368]    [Pg.493]    [Pg.246]    [Pg.355]    [Pg.56]    [Pg.263]    [Pg.379]    [Pg.571]    [Pg.141]    [Pg.121]    [Pg.114]    [Pg.252]    [Pg.252]    [Pg.232]   
See also in sourсe #XX -- [ Pg.270 , Pg.279 ]




SEARCH



© 2024 chempedia.info