Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Connection output

In generaf each module contains one or more inputs and an output. The programming involves connecting outputs of function blocks to inputs of other blocks via the graphical-user interface. Some modules may require additional parameters to direct module execution. Users are required to fill in templates to indicate the sources of input values, the destinations of output values, and the parameters for forms/tables prepared for the modules. The source and destination blanks may specify process I/O channels and tag names when appropriate. To connect modules, some systems require filling in the tag names of modules originating or receiving data. [Pg.71]

Connects output buses to registers, dynamically performing register allocation. [Pg.144]

Artificial Neural Networks. An Artificial Neural Network (ANN) consists of a network of nodes (processing elements) connected via adjustable weights [Zurada, 1992]. The weights can be adjusted so that a network learns a mapping represented by a set of example input/output pairs. An ANN can in theory reproduce any continuous function 95 —>31 °, where n and m are numbers of input and output nodes. In NDT neural networks are usually used as classifiers... [Pg.98]

The architecture of a backpropagation neuronal network is comparatively simple. The network consists of different neurone layers. The layer connected to the network input is called input layer while the layer at the network output is called the output layer. The different layers between input and output are named hidden layers. The number of neurones in the layers is determined by the developer of the network. Networks used for classification have commonly as much input neurones as there are features and as much output neurones as there are classes to be separated. [Pg.464]

Fig. 11-13. Apparatus for measuring the time dependence of interfacial tension (from Ref. 34). The air and aspirator connections allow for establishing the desired level of ftesh surface. IV denotes the Wilhelmy slide, suspended from a Cahn electrobalance with a recorder output. Fig. 11-13. Apparatus for measuring the time dependence of interfacial tension (from Ref. 34). The air and aspirator connections allow for establishing the desired level of ftesh surface. IV denotes the Wilhelmy slide, suspended from a Cahn electrobalance with a recorder output.
The connection table of the query object (similarity probe) is processed to obtain the set of atom pairs, and then the database file is scanned to evaluate the similarity between the query and each of the database structures. The maximum number of structures that the program will select is specified, as well as the minimum similarity score that a database compoimd must show to be selected. Within these limits, the program will select from the database the structures that are most similar (with the highest similarity value) to the query and will create an output file of compoimd numbers and similarity values, sorted by decreasing similarity, for the selected compounds. [Pg.312]

GETELM Reads and echo prints element connectivity formatting should match the output generated by the pre-processor. [Pg.212]

Note that the strict foiiriat of the ethylene output file was not followed in adding new atoms. Be careful of your connected atom list to the right of the input file it is a rich source of potential errors. Use your graph to keep the numbering straight. [Pg.111]

With brisk stirring 75mL Everclear (ethanol) is poured into the reaction flask then 75mL concentrated sulfuric acid is slowly added until incorporated. The rest of the distillation apparatus is connected and the solution slowly heated to about 140°C. Next, 150mL Everclear is dripped in slowly so as to match the approximate distillation output that one can see condensing over into the collection flask. The temperature must remain between 140-150 C. After all the ethanol has been added (which should have taken approximately 90 min) the distillate that has collected is washed with 5% NaOH solution then with water (remember that the ether will form the top layer here). The ether can then be dried through sodium sulfate and used or can be distilled to purify. [Pg.254]

In addition, most devices provide operator control of settings for temperature and/or response slope, isopotential point, zero or standardization, and function (pH, mV, or monovalent—bivalent cation—anion). Microprocessors are incorporated in advanced-design meters to faciHtate caHbration, calculation of measurement parameters, and automatic temperature compensation. Furthermore, pH meters are provided with output connectors for continuous readout via a strip-chart recorder and often with binary-coded decimal output for computer interconnections or connection to a printer. Although the accuracy of the measurement is not increased by the use of a recorder, the readabiHty of the displayed pH (on analogue models) can be expanded, and recording provides a permanent record and also information on response and equiHbrium times during measurement (5). [Pg.467]

In addition to the circuit breaker, there have been a number of other SMA appHcations for various functions in electric power generation (qv), distribution, and transmission systems. One such device is a thermal indicator that provides a signal visible from the ground of a hot junction or connector in a distribution yard. Such hot spots occur as a result of the loosening of bus bar connectors owing to cycHc temperature as the electric load varies. In addition to the use of SMA flags as a hot-spot indicators, actuators that automatically maintain the contact force in a bus bar connection have been demonstrated. Based on a BeUeviHe washer fabricated from a Cu—Al—Ni SMA trained to exhibit two-way memory, these washers, when heated by a hot joint, increase their force output and correct the condition. A 30 mm diameter washer 3 mm thick can produce a force of over 4000 N. Similar in purpose... [Pg.464]

Fig. 1. The energy levels in a semiconductor. Shown are the valence and conduction bands and the forbidden gap in between where represents an occupied level, ie, electrons are present O, an unoccupied level and -3- an energy level arising from a chemical defect D and occurring within the forbidden gap. The electrons in each band are somewhat independent, (a) A cold semiconductor in pitch darkness where the valence band levels are filled and conduction band levels are empty, (b) The same semiconductor exposed to intense light or some other form of excitation showing the quasi-Fermi level for each band. The energy levels are occupied up to the available voltage for that band. There is a population inversion between conduction and valence bands which can lead to optical gain and possible lasing. Conversely, the chemical potential difference between the quasi-Fermi levels can be connected as the output voltage of a solar cell. Fquilihrium is reestabUshed by stepwise recombination at the defect levels D within the forbidden gap. Fig. 1. The energy levels in a semiconductor. Shown are the valence and conduction bands and the forbidden gap in between where represents an occupied level, ie, electrons are present O, an unoccupied level and -3- an energy level arising from a chemical defect D and occurring within the forbidden gap. The electrons in each band are somewhat independent, (a) A cold semiconductor in pitch darkness where the valence band levels are filled and conduction band levels are empty, (b) The same semiconductor exposed to intense light or some other form of excitation showing the quasi-Fermi level for each band. The energy levels are occupied up to the available voltage for that band. There is a population inversion between conduction and valence bands which can lead to optical gain and possible lasing. Conversely, the chemical potential difference between the quasi-Fermi levels can be connected as the output voltage of a solar cell. Fquilihrium is reestabUshed by stepwise recombination at the defect levels D within the forbidden gap.
Transducers The ciirrent-to-pressiire transducer (I/P transducer) is a conversion interface that accepts a standard 4-20 rnA input current from the process controller and converts it to a pneumatic output in a standard pneumatic pressure range (normally (),2-L0 bar [3-15 psig] or, less frequently, 0,4-2,0 bar [6-30 p.sig]). The output pressure generated by the transducer is connected directly to the pressure connection on a spring-opposed diaphragm actuator or to the input of a pneumatic valve positioner. [Pg.782]

Control-System Components The three principal elements of a control system are the sensing device which measures the error as the deviation from the set point, means for transmission and amphfi-cation of the error signal, and the control output device in the form of a seivo-operated valve. In the case of the direct-acting flyball governor (Fig. 29-18) these three elements are combined in the flyball element and the linkage that connects to the valve. [Pg.2499]


See other pages where Connection output is mentioned: [Pg.165]    [Pg.19]    [Pg.487]    [Pg.107]    [Pg.165]    [Pg.19]    [Pg.487]    [Pg.107]    [Pg.723]    [Pg.1424]    [Pg.102]    [Pg.454]    [Pg.500]    [Pg.720]    [Pg.100]    [Pg.208]    [Pg.213]    [Pg.416]    [Pg.473]    [Pg.353]    [Pg.233]    [Pg.197]    [Pg.539]    [Pg.508]    [Pg.754]    [Pg.766]    [Pg.773]    [Pg.777]    [Pg.781]    [Pg.783]    [Pg.785]    [Pg.785]    [Pg.1813]    [Pg.2487]    [Pg.2536]    [Pg.29]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



© 2024 chempedia.info