Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conductor optical

The method of obtaining of GRIN media with elliptical cross section, from which one can form the one-mod light conductor (optical fiber), has been also described [12, 39]. One obtains such selfoc using analogous methods (installation) in which the pipe and reactor have the elliptical section [39]. [Pg.88]

Aluminum - electrical conductor, optical reflectance, corrosion resistance, permeation barrier... [Pg.10]

Chemical properties of deposited monolayers have been studied in various ways. The degree of ionization of a substituted coumarin film deposited on quartz was determined as a function of the pH of a solution in contact with the film, from which comparison with Gouy-Chapman theory (see Section V-2) could be made [151]. Several studies have been made of the UV-induced polymerization of monolayers (as well as of multilayers) of diacetylene amphiphiles (see Refs. 168, 169). Excitation energy transfer has been observed in a mixed monolayer of donor and acceptor molecules in stearic acid [170]. Electrical properties have been of interest, particularly the possibility that a suitably asymmetric film might be a unidirectional conductor, that is, a rectifier (see Refs. 171, 172). Optical properties of interest include the ability to make planar optical waveguides of thick LB films [173, 174]. [Pg.560]

Optical characteristics include transmitting portions of the infrared. Boron is a poor conductor of electricity at room temperature but a good conductor at high temperature. [Pg.13]

The study of organic semiconductors and conductors is highly iaterdisciplinary, involving the fields of chemistry, soHd-state physics, engineering, and biology. This article provides a treatment of the theoretical aspects of organic semiconductors as well as an overview of recent advances ia the field and the uses of these materials based on their conductive and optical properties. [Pg.236]

Data Communication Wires. Electronic cables such as data communication wires employ three basic designs coaxial, twisted pair, and fiber optics (3,4) (Eig. 1). Coaxial cables are so named because the axis of curvature of its outer conductor is concentric to its inner central wire. The metal braiding wrapped around the insulated center wire acts as the return current conductor in addition to shielding the wire from various interferences. [Pg.322]

With the discoveiy of electricity, the evolution of communications occurred at a rapid rate. Smoke signals that were used for hundreds of years to convey information at a word or two per minute were first replaced by the use of copper-based conductors, such as the telegraph, that transmitted twenty to forty words per minute. By the end of the twentieth century, lasers with fiber optic wires transmitted an entire book around the world in under a second. [Pg.277]

One-dimensional complexes, 6,134 One-dimensional conductors, 6,134 One-dimensional metals Krogmann salts, 6, 136 Optical isomerism cobalt ammines, 1,12 history, 1,180... [Pg.182]

Tin oxide, Sn02, has unusual physical properties. It is a good electrical conductor. It is highly transparent to the visible and highly reflective to the infrared spectrum. It is deposited extensively by CVD mostly for optical applications. Its characteristics and properties are summarized in Table 11.6. [Pg.307]

The possibility of realizing via percolated w/o microemulsion conductor/insulating composite materials with very large dielectric constant and exotic optical properties has been pointed out [284],... [Pg.497]

Point defects were mentioned in a prior chapter. We now need to determine how they aiffect the structure auid chemical reactivity of the solid state. We will begin by identifying the various defects which can arise in solids and later will show how they can be manipulated to obtain desirable properties not found in naturally formed solids. Since we have already defined solids as either homogeneous and heterogeneous, let us look first at the homogeneous t5 e of solid. We will first restrict our discussion to solids which are stoichiometric, and later will examine solids which can be classified as "non-stoichiometric", or having an excess of one or another of one of the building blocks of the solid. These occur in semi-conductors as well as other types of electronically or optically active solids. [Pg.74]

Finally, the shape and self-assembly of these particles can also be controlled which gives rise to novel nanomaterials displaying interesting physical properties in the fields of semi-conductors, magnetism, or optics. [Pg.256]

The coordination chemistry of the trichalcogenophosphonates is very undeveloped when compared to the analogous metal organophosphonates (RP032), which have been extensively studied owing to their potential and practical applications as ion exchangers, sorbents, sensors, proton conductors, nonlinear optical materials, photochemically active materials, catalysts and hosts for the intercalation of a broad spectrum of guests.145... [Pg.322]

The combination of low optical absorbance and high electrical conductivity has attracted a lot of interest for transparent conductor applications. When coupled with its flexibility, it is widely seen as a possible replacement for indium-doped tin oxide (ITO), which has a sheet resistance of 100 Q/cm at 90 % transparency. By growing graphene on copper foils, sheet resistances of 125 Q/cm at 97.4% transparency have been achieved [19]. This has been improved by combining four layers with doping of the graphene, giving resistance of 30 Q/cm at 90% transparency, all done on 30-inch roll-to-roll production scale. [Pg.26]

An important consequence of the presence of the metal surface is the so-called infrared selection rule. If the metal is a good conductor the electric field parallel to the surface is screened out and hence it is only the p-component (normal to the surface) of the external field that is able to excite vibrational modes. In other words, it is only possible to excite a vibrational mode that has a nonvanishing component of its dynamical dipole moment normal to the surface. This has the important implication that one can obtain information by infrared spectroscopy about the orientation of a molecule and definitely decide if a mode has its dynamical dipole moment parallel with the surface (and hence is undetectable in the infrared spectra) or not. This strong polarization dependence must also be considered if one wishes to use Eq. (1) as an independent way of determining ft. It is necessary to put a polarizer in the incident beam and use optically passive components (which means polycrystalline windows and mirror optics) to avoid serious errors. With these precautions we have obtained pretty good agreement for the value of n determined from Eq. (1) and by independent means as will be discussed in section 3.2. [Pg.3]

The most common cause of trouble when working with optically transparent electrodes (OTEs) is scratches in the thin film of conductor. Since the electrode is coated with a thin layer of semiconductor, a scratch can in effect cut right through the conductive layer, thus causing an insulatory channel. The two parts of the semiconductor on either side of the scratch are therefore prevented from communicating with each other, and so the portion of the electrode beyond the scratch is rendered useless. [Pg.270]


See other pages where Conductor optical is mentioned: [Pg.537]    [Pg.78]    [Pg.629]    [Pg.537]    [Pg.78]    [Pg.629]    [Pg.197]    [Pg.308]    [Pg.276]    [Pg.26]    [Pg.471]    [Pg.513]    [Pg.405]    [Pg.724]    [Pg.174]    [Pg.472]    [Pg.331]    [Pg.147]    [Pg.289]    [Pg.337]    [Pg.302]    [Pg.353]    [Pg.112]    [Pg.321]    [Pg.343]    [Pg.670]    [Pg.272]    [Pg.326]    [Pg.594]    [Pg.755]    [Pg.53]    [Pg.129]    [Pg.21]    [Pg.378]    [Pg.42]    [Pg.173]    [Pg.325]    [Pg.338]   
See also in sourсe #XX -- [ Pg.202 ]




SEARCH



© 2024 chempedia.info