Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conductor diffusive

Daikhin s analysis, 52, 53 double layer capacitance of solid at, 52 semi conductor, diffusion length, 492... [Pg.630]

The most direct effect of defects on tire properties of a material usually derive from altered ionic conductivity and diffusion properties. So-called superionic conductors materials which have an ionic conductivity comparable to that of molten salts. This h conductivity is due to the presence of defects, which can be introduced thermally or the presence of impurities. Diffusion affects important processes such as corrosion z catalysis. The specific heat capacity is also affected near the melting temperature the h capacity of a defective material is higher than for the equivalent ideal crystal. This refle the fact that the creation of defects is enthalpically unfavourable but is more than comp sated for by the increase in entropy, so leading to an overall decrease in the free energy... [Pg.639]

There are several approaches to the preparation of multicomponent materials, and the method utilized depends largely on the nature of the conductor used. In the case of polyacetylene blends, in situ polymerization of acetylene into a polymeric matrix has been a successful technique. A film of the matrix polymer is initially swelled in a solution of a typical Ziegler-Natta type initiator and, after washing, the impregnated swollen matrix is exposed to acetylene gas. Polymerization occurs as acetylene diffuses into the membrane. The composite material is then oxidatively doped to form a conductor. Low density polyethylene (136,137) and polybutadiene (138) have both been used in this manner. [Pg.39]

The error due to diffusion potentials is small with similar electrolyte solutions (cj = C2) and with ions of equal mobility (/ Iq) as in Eq. (3-4). This is the basis for the common use of electrolytic conductors (salt bridge) with saturated solutions of KCl or NH4NO3. The /-values in Table 2-2 are only applicable for dilute solutions. For concentrated solutions, Eq. (2-14) has to be used. [Pg.86]

Diffusion length in typical semi conductor electrodes, 492... [Pg.629]

The obvious question then arises as to whether the effective double layer exists before current or potential application. Both XPS and STM have shown that this is indeed the case due to thermal diffusion during electrode deposition at elevated temperatures. It is important to remember that most solid electrolytes, including YSZ and (3"-Al2C)3, are non-stoichiometric compounds. The non-stoichiometry, 8, is usually small (< 10 4)85 and temperature dependent, but nevertheless sufficiently large to provide enough ions to form an effective double-layer on both electrodes without any significant change in the solid electrolyte non-stoichiometry. This open-circuit effective double layer must, however, be relatively sparse in most circumstances. The effective double layer on the catalyst-electrode becomes dense only upon anodic potential application in the case of anionic conductors and cathodic potential application in the case of cationic conductors. [Pg.272]

Interconnect. Three-dimensional structures require interconnections between the various levels. This is achieved by small, high aspect-ratio holes that provide electrical contact. These holes include the contact fills which connect the semiconductor silicon area of the device to the first-level metal, and the via holes which connect the first level metal to the second and subsequent metal levels (see Fig. 13.1). The interconnect presents a major fabrication challenge since these high-aspect holes, which may be as small as 0.25 im across, must be completely filled with a diffusion barrier material (such as CVD titanium nitride) and a conductor metal such as CVD tungsten. The ability to fill the interconnects is a major factor in selecting a thin-film deposition process. [Pg.349]

CVD is a maj or process in the production of thin films of all three categories of electronic materials semiconductors, conductors, and insulators. In this chapter, the role of CVD in the fabrication of semiconductors is reviewed. The CVD production of insulators, conductors, and diffusion barriers is reviewed in the following chapter. The major semiconductor materials in production or development are silicon, germanium, ni-V and II-VI compounds, silicon carbide, and diamond. [Pg.352]

CVD in Electronic Applications Conductors, Insulators, and Diffusion Barriers... [Pg.367]

CVD plays an increasingly important part in the design and processing of advanced electronic conductors and insulators as well as related structures, such as diffusion barriers and high thermal-conductivity substrates (heat-sinks). In these areas, materials such as titanium nitride, silicon nitride, silicon oxide, diamond, and aluminum nitride are of particular importance. These compounds are all produced by CVD. 1 1 PI... [Pg.367]

The broken vertical line denotes an area of contact between any two ionic conductors, particularly between liquid ionic conductors (electrolyte-electrolyte interface or liquid junction). Ions can transfer between phases by diffusion across such a boundary hence, circuits containing such an interface are often called circuits or cells with transference. [Pg.13]

The ideal conductor model does not account for diffuseness of the ionic distribution in the electrolyte and the corresponding spreading of the electric field with a potential drop outside the membrane. To account approximately for these effects we apply Poisson-Boltzmann theory. The results for the modes energies can be summarized as follows [89] ... [Pg.86]

Diffusion and migration in solid crystalline electrolytes depend on the presence of defects in the crystal lattice (Fig. 2.16). Frenkel defects originate from some ions leaving the regular lattice positions and coming to interstitial positions. In this way empty sites (holes or vacancies) are formed, somewhat analogous to the holes appearing in the band theory of electronic conductors (see Section 2.4.1). [Pg.135]


See other pages where Conductor diffusive is mentioned: [Pg.134]    [Pg.2455]    [Pg.134]    [Pg.2455]    [Pg.645]    [Pg.423]    [Pg.2409]    [Pg.224]    [Pg.122]    [Pg.264]    [Pg.121]    [Pg.250]    [Pg.536]    [Pg.291]    [Pg.813]    [Pg.422]    [Pg.536]    [Pg.130]    [Pg.91]    [Pg.369]    [Pg.369]    [Pg.371]    [Pg.372]    [Pg.373]    [Pg.375]    [Pg.377]    [Pg.379]    [Pg.381]    [Pg.383]    [Pg.8]    [Pg.320]    [Pg.331]    [Pg.521]    [Pg.75]    [Pg.323]    [Pg.74]   
See also in sourсe #XX -- [ Pg.122 ]




SEARCH



CVD in Electronic Applications Conductors, Insulators, and Diffusion Barriers

Diffused conductors

Diffused conductors

© 2024 chempedia.info