Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conductivity tetrafluoroethylene

Preparation. The manufacture of tetrafluoroethylene [116-14-3] (TEE) involves the following steps (2—9). The pyrolysis is often conducted at a PTFE manufacturing site because of the difficulty of handling TFE. [Pg.348]

When the process medium is electrically conductive (dielectric values > 10), the capacitor developed above does not work the iasulatiag material needed between the two conductive plates is lost. The conductive Hquid surrounding the probe acts as a short circuit to the tank wall (second plate of the capacitor). To reestabUsh the dielectric (iasulatiag material), the probe can be iasulated with a nonconductive material such as tetrafluoroethylene (TFE), poly(vinyhdene fluoride) (PVDF), poly(vinyl chloride) (PVC), etc. The capacitor exists between the probe rod, through the thickness of the iasulation (dielectric), to the conductive Hquid which is now acting as the second plate of the capacitor, or ground reference (Fig. 9). [Pg.210]

These types of separators consist of a solid matrix and a liquid phase, which is retained in the microporous structure by capillary forces. To be effective for batteries, the liquid in the microporous separator, which generally contains an organic phase, must be insoluble in the electrolyte, chemically stable, and still provide adequate ionic conductivity. Several types of polymers, such as polypropylene, polysulfone, poly(tetrafluoroethylene), and cellulose acetate, have been used for porous substrates for supported-liquid membranes. The PVdF coated polyolefin-based microporous membranes used in gel—polymer lithium-ion battery fall into this category. Gel polymer... [Pg.184]

Nafion is a copolymer of poly(tetrafluoroethylene) and polysulfonyl fluoride vinyl ether. It has fixed anions, which are sulfonic acid sites, and consequently, by electroneutrality, the concentration of positive ions is fixed. Furthermore, the transference number of protons in this system is 1, which greatly simplifies the governing transport equations, as seen below. There can be different forms of Nafion in terms of the positive counterion (e.g., proton, sodium, etc.). Most models deal only with the proton or acid form of Nafion, which is the most common form used in polymer-electrolyte fuel cells due to its high proton conductivity. [Pg.451]

A study has been conducted on PBXs based on TATB using various binders such as polyurethane (Estane 5703-Goodrich), Viton-A (copolymer of vinylidene fluoride and hexafluoropropylene Du Pont), silicone resin (Chemlok), Kel-F800 [copolymer (3 1) of chlorotrifluoroethylene and vinylidene fluoride 3M Company] and Teflon [poly (tetrafluoroethylene), PTFE Du Pont] etc. and it was concluded that... [Pg.120]

Screening tests were conducted on potential construction materials. The candidate materials evaluated included the following polytetrafluoroethylene (PTFE, TFE), fluorinated ethylene-propylene copolymer (FEP), perfluoroalkoxy-alkanes (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-chlorotrifluoroethylene copolymer (E-CTFE), poly vinylidene fluoride (PVDF), polypropylene (PP), and polyvinyl chloride (PVC). These materials were chosen based on cost, availability, and information from manufacturers on compatibility with acid solutions. [Pg.317]

The oldest investigation was conducted by Warnell [54] in 1967 who telomerised HFPO or tetrafluoroethylene epoxide by ring opening with two co-iodofluoro-carbon ether acid fluorides producing the corresponding adducts, as follows ... [Pg.178]

The first step is set up to produce hydrogen fluoride and the second yields trichlo-romethane (chloroform). Chloroform is then partially fluorinated with hydrogen fluoride to chlorodifluoromethane using antimony fluoride as catalyst in the third step. Finally, in the fourth step, chlorodifluoromethane is subjected to pyrolysis in which it is converted to tetrafluoroethylene. The pyrolysis is a noncatalytic gas-phase process carried out in a flow reactor at atmospheric or subatmospheric pressure and at temperatures 590 to 900°C (1094 to 1652°F) with yields as high as 95%. This last step is often conducted at the manufacturing site for PTFE because of the difficulty of handling the monomer.9... [Pg.17]

Nation ionomers are produced by copolymerization of a perfluorinated vinyl ether comonomer with tetrafluoroethylene resulting in the chemical structure shown in Figure 8.25 [162,166], This polymer and other related polymers consist of perfluorinated, hydrophobic, backbones that give chemical stability to the material. The material also contains sulfonated, hydrophilic, side groups that make hydration possible in the acidic regions, and also allow the transport of protons at low temperatures, since the higher limit of temperature is determined by the humidification of the membrane, since water is a sine qua non for conduction [166], The material exhibits a proton conductivity of 0.1 S/cm at 80°C [162], The membrane performance is then based on the hydrophilic character of the sulfonic acid groups, which allow proton transport when hydrated while the hydrophobic... [Pg.412]

The compilation of such data constituted a firm basis that was used to study a specific and more complicated system the elucidation of the electronic structure of a copolymer of ethylene (48%) and tetrafluoroethylene (52%) whose synthesis was conducted in order to maximize the alternating sequences. The valence band spectrum of such a compound (Figure 8) was found very similar to the one measured e.g. for poly(vinylidene fluoride). But, by looking to the fine details of the spectrum, by simulating the valence band of a block copolymer (by addition of PE and PTFE spectra), and by comparison with model calculations, it was possible to show that the C-C band width and the distance F2s-top of the C-C band were characteristic of an ethylene-tetrafluoro-ethylene copolymer with dominant alternant structure (28). [Pg.184]

Ishigure e al. (1964) reported that the radiation-induced polymerization of tetrafluoroethylene and propylene in the liquid phase produced an essentially alternating rubbery copolymer. Ito et al. (1974a) and Matsuda et al. (1974a) studied the same system in emulsion using a variety of mixed and pure emulsifiers. The experiments were conducted in a stirred 200-ml... [Pg.444]

In general, polymers are insulating materials having conductivities ranging from 10 ° (fl cm)" for poly(vinyl chloride) to 10" (ft cm) for poly(tetrafluoroethylene), which are many orders of magnitude below the conductivities associated with metals (Figure 1.13). Indeed, low conductivity (and consequent low dielectric constant) is one of the major reasons polymers have found widespread acceptance in a myriad of insulating and structural... [Pg.26]

As with the higher impact resistance achievable with polystyrene when styrene is copolymerized with a rubber, the melt-forming temperatures of PTFE resin may be conveniently lowered by copolymerization of tetrafluoroethylene with low ratios of perfluoropropyl vinyl ether (boiling point, 36°C). The polymerization may be conducted in either an aqueous medium or in an organic solvent (Eq. 23.8). [Pg.750]

There has been a great deal of interest in the study of the electrical properties of plasma polymerized films. Early data on the dielectric and conductivity of the films has been reviewed by Mearns ( ). More recently, the dielectric properties of plasma polymerized styrene (69-71), acrylonitrile (72), hexamethyldisiloxane (73-75), tetrafluoroethylene... [Pg.23]

Kavan [28] and Kijima et al. [29] have used the electrochemical method to synthesize carbyne. This technique may be realized by classical electrochemistry whereby the charge transfer reaction occurs at interface of a metal electrode and liquid electrolyte solution. Electrons in reaction were supplied either through redox active molecules or through an electrode, which contacts an ionically conducting solid or liquid phase and the precursor. In general, the structure and properties of electrochemical carbon may differ considerably from those of usual pyrolytic carbons. The advantage of this technique is the synthesis of carbyne at low (room) temperature. It was shown that the best product was prepared by cathodic defluorination of poly(tetrafluoroethylene) and some other perhalo-//-alkanes. The carbyne... [Pg.81]

A significant advantage of conducting polymerization and oligomerization of fluoroalkanes in carbon dioxide rather than other solvents is the absence of chain transfer to CO2. Radicals generated from fluoroalkene monomers such as tetrafluoroethylene (TFE) are quite electrophilic, and will undergo facile chain transfer to virtually any hydrocarbon that is present in the system. Moreover, highly reactive monomers such as TFE can be handled more safely as... [Pg.302]


See other pages where Conductivity tetrafluoroethylene is mentioned: [Pg.99]    [Pg.99]    [Pg.117]    [Pg.61]    [Pg.112]    [Pg.61]    [Pg.354]    [Pg.31]    [Pg.599]    [Pg.89]    [Pg.189]    [Pg.404]    [Pg.57]    [Pg.439]    [Pg.263]    [Pg.89]    [Pg.1158]    [Pg.1092]    [Pg.2504]    [Pg.27]    [Pg.339]    [Pg.33]    [Pg.604]    [Pg.5]    [Pg.442]    [Pg.459]    [Pg.141]    [Pg.177]    [Pg.551]    [Pg.706]    [Pg.706]    [Pg.70]   
See also in sourсe #XX -- [ Pg.27 ]




SEARCH



Tetrafluoroethylene

© 2024 chempedia.info