Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Concurrent steps

The polymerization process consists of a series of consecutive and concurrent steps ... [Pg.218]

The selective addition of the second HCN to provide ADN requires the concurrent isomerisation of 3PN to 4-pentenenitrile [592-51 -8] 4PN (eq. 5), and HCN addition to 4PN (eq. 6). A Lewis acid promoter is added to control selectivity and increase rate in these latter steps. Temperatures in the second addition are significandy lower and practical rates may be achieved above 20°C at atmospheric pressure. A key to the success of this homogeneous catalytic process is the abiUty to recover the nickel catalyst from product mixture by extraction with a hydrocarbon solvent. 2-Methylglutaronitrile [4553-62-2] MGN, ethylsuccinonitfile [17611-82-4] ESN, and 2-pentenenitrile [25899-50-7] 2PN, are by-products of this process and are separated from adiponitrile by distillation. [Pg.221]

The single-step -duoroaruline [31-40-4] process based on duorodeoxygenation of nitrobenzene (via in situ generation of /V-phenylhydroxyl amine) in anhydrous hydrogen duoride (94—96) has not been commercialized primarily due to concurrent formation of aniline, as well as limited catalyst life. The potential attractiveness of this approach is evidenced by numerous patents (97—101). Concurrent interest has been shown in the two-step process based on /V-phenylhydroxylamine (HF-Bamberger reaction) (102—104). [Pg.319]

In a patented process, a stirred suspension of sodium sulfite is continuously treated with aqueous sodium hydroxide and a sulfur dioxide-containing gas at 60—85°C, and 96% pure anhydrous sodium sulfite is removed by filtration (336). In another continuous one-step process, substantially anhydrous sodium carbonate and sulfur dioxide are concurrently introduced into a saturated solution of sodium sulfite at pH 6.5—7.6 and above 35°C with continuous removal of sodium sulfite (337). [Pg.149]

When topological strategies are used concurrently with other types of strategic guidance several benefits may result including (1) reduction of the time required to find excellent solutions (2) discovery of especially short or convergent synthetic routes (3) effective control of stereochemistry (4) orientational (regiochemical) selectivity (5) minimization of reactivity problems and (6) facilitation of crucial chemical steps. [Pg.37]

The notion of concurrent SnI and Sn2 reactions has been invoked to account for kinetic observations in the presence of an added nucleophile and for heat capacities of activation,but the hypothesis is not strongly supported. Interpretations of borderline reactions in terms of one mechanism rather than two have been more widely accepted. Winstein et al. have proposed a classification of mechanisms according to the covalent participation by the solvent in the transition state of the rate-determining step. If such covalent interaction occurs, the reaction is assigned to the nucleophilic (N) class if covalent interaction is absent, the reaction is in the limiting (Lim) class. At their extremes these categories become equivalent to Sn and Sn , respectively, but the dividing line between Sn and Sn does not coincide with that between N and Lim. For example, a mass-law effect, which is evidence of an intermediate and therefore of the SnI mechanism, can be observed for some isopropyl compounds, but these appear to be in the N class in aqueous media. [Pg.429]

At the start the cathode is invariably a metal different from that to be deposited. Frequently, the aim is to coat a base metal with a more noble one, but it may not be possible to do this in one step. When a metal is immersed in a plating bath it will corrode unless its potential is sufficiently low to suppress its ionisation. Fortunately, a low rate of corrosion is tolerable for a brief initial period. There are cases where even when a cathode is being plated at a high cathodic (nett) current density, the substrate continues to corrode rapidly because the potential (determined by the metal deposited) is too high. No satisfactory coating forms if the substrate dissolves at a high rate concurrently with electrodeposition. This problem can be overcome by one or more of the following procedures ... [Pg.351]

The ether-forming step is an S -like reaction of the alkoxide ion on the silicon atom, with concurrent loss of the leaving chloride anion. Unlike most Sn2 reactions, though, this reaction takes place at a tertiary center—a trialJkyl-substituted silicon atom. The reaction occurs because silicon, a third-row atom, is larger than carbon and forms longer bonds. The three methyl substituents attached to silicon thus offer less steric hindrance to reaction than they do in the analogous ferf-butyl chloride. [Pg.627]

Step 2 of Figure 29.13 Decarboxylation and Phosphorylation Decarboxylation of oxaloacetate, a jB-keto acid, occurs by the typical retro-aldol mechanism like that in step 3 in the citric acid cycle (Figure 29.12), and phosphorylation of the resultant pyruvate enolate ion by GTP occurs concurrently to give phosphoenol-pyruvate. The reaction is catalyzed by phosphoenolpyruvate carboxykinase. [Pg.1162]

In semi-cristalline polymers, rate-enhancement under stress has been frequently observed, e.g. in UV-photooxidation of Kapron, natural silk [80], polycaprolactam and polyethylene terephthalate [81]. Quantitative interpretation is, however, difficult in these systems although the overall rate is determined by the level of applied stress, other stress-dependent factors like the rate of oxygen diffusion or change in polymer morphology could occur concurrently and supersede the elementary molecular steps [82, 83], Similar experiments in the fluid state showed unequivocally that flow-induced stresses can accelerate several types of reactions, the best studied being the hydrolysis of DNA [84] and of polyacrylamide [85]. In these examples, hydrolysis involves breaking of the ester O —PO and the amide N —CO bonds. The tensile stress stretches the chain, and therefore, facilitates the... [Pg.105]

The thermal decomposition of a solid, which necessarily (on the above definition) incorporates a chemical step, is sometimes associated with the physical transformations to which passing reference was made above melting, sublimation, and recrystallization. Aspects of the relationships between physical transitions and decomposition reactions of solids are discussed in a book by Budnikov and Ginstling [1]. Since, in general, phase changes exert significant influence upon concurrent or subsequent chemical processes, it is appropriate to preface the main survey of the latter phenomena with a brief account of those features of melting, sublimation, and recrystallization which are relevant to the consideration of thermal decomposition reactions. [Pg.1]

Measurements of product gas evolution, mass loss or evolved gas analysis may all be used to study the kinetics of a solid—solid interaction provided that there is strict adherence to the condition that gas evolution occurs concurrently with the solid state process. Clearly this approach is only applicable if there is direct experimental support for a single step process. For example, carbon dioxide release is identified [410] as being... [Pg.37]

Nevertheless, such a combination of polar factors actually makes this step less efficient than that is usually in the reactions with CBr4, and as a result the radical-adduct CB3CH2CHCF3 takes part in concurrent reaction of growth chain with another monomer molecule to form telomer T2 this is basically non-typical for reactions of CBr4. [Pg.184]

In the lUPAC system, the SnI mechanism is Dn -f An or Djy-f An (where denotes the rate-determining step). The lUPAC designations for the SnI and Sn2 mechanisms thus clearly show the essential differences between them AnDn indicates that bond breaking is concurrent with bond formation Dn + An shows that the former happens first. [Pg.394]

In the case of replacement of CO from the group VI carbonyl compounds there is additional evidence to the effect that the type A ligands labilize CO whereas the type B do not, but rather promote a second-order reaction. For the group VII octahedral compounds there is no strong evidence in favour of an associative activation step, except when interpretation is obscured by subsequent or concurrent reaction (but see ref. 146). There is, however, good reason to believe that such an associative reaction does occur in certain of the group VI compounds. [Pg.40]

Yeom and Frei [96] showed that irradiation at 266 nm of TS-1 loaded with CO and CH3OH gas at 173 K gave methyl formate as the main product. The photoreaction was monitored in situ by FT-IR spectroscopy and was attributed to reduction of CO at LMCT-excited framework Ti centers (see Sect. 3.2) under concurrent oxidation of methanol. Infrared product analysis based on experiments with isotopically labeled molecules revealed that carbon monoxide is incorporated into the ester as a carbonyl moiety. The authors proposed that CO is photoreduced by transient Ti + to HCO radical in the primary redox step. This finding opens up the possibility for synthetic chemistry of carbon monoxide in transition metal materials by photoactivation of framework metal centers. [Pg.55]

In the first case the mechanisms are based on an increased reducing capacity of Fe(lll)-chelates, a necessary step in the uptake process, with a concurrent increase in acidification and release of organic acids into the rhizosphere in the latter case molecules having high affinity for Fe (phytosiderophores) are synthesized and released into the rhizosphere when Fe is lacking. [Pg.146]


See other pages where Concurrent steps is mentioned: [Pg.458]    [Pg.116]    [Pg.442]    [Pg.458]    [Pg.116]    [Pg.442]    [Pg.382]    [Pg.447]    [Pg.52]    [Pg.403]    [Pg.258]    [Pg.196]    [Pg.19]    [Pg.21]    [Pg.37]    [Pg.188]    [Pg.46]    [Pg.690]    [Pg.200]    [Pg.101]    [Pg.152]    [Pg.179]    [Pg.184]    [Pg.272]    [Pg.285]    [Pg.2]    [Pg.250]    [Pg.352]    [Pg.46]    [Pg.528]    [Pg.304]    [Pg.579]    [Pg.1226]    [Pg.132]    [Pg.151]   
See also in sourсe #XX -- [ Pg.87 ]

See also in sourсe #XX -- [ Pg.101 ]




SEARCH



Concurrence

Concurrency

Concurrent

© 2024 chempedia.info