Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Concentration risk assessment

It is obvious from the provisional risk assessment values for microcystins, and, being of the same order of magnitude of mammalian toxicity, similar values may be calculated for the cyanobacterial neurotoxins, that sensitive detection methods are required to detect these low concentrations of toxins. Of the biological methods of detection discussed earlier, the mouse and invertebrate bioassays are not sensitive enough without concentration of water samples, in that they are only able to detect mg of microcystins per litre. Only the immunoassays (ng-/rg 1 and the protein phosphatase inhibition assays (ng O... [Pg.121]

The Modeling Engine in THERdbASE has the following model groups 1) Population Distributions, 2) Location/Activity Patterns, 3) Food Consumption Patterns, 4) Agent Releases Characteristics, 5) Microenvironment Agent Concentrations, 6) Macroenvironment Agent Concentrations, 7) Exposure Patterns and Scenarios, 8) Dose Patterns, and 9) Risk Assessment. [Pg.372]

Personal exposure Predictions of exposure of occupants to airborne contaminants for risk assessment, inhaled doses, or time-integrated concentration values. [Pg.1082]

Risk is often defined as the likelihood of a certain event times a measure of the severity of its consequences. Most risk assessment studies concentrate on estimating the likelihood of certain events. They often concern the release of chemicals, or accidents in engineering projects and the project outcome. In thi.s section, the subject of accidents is not covered. Risk assessment (RA), as a technique, has been adopted by various national governments, by EU, and by OECD.-... [Pg.1368]

Since 1970 tlie field of healtli risk assessment Itas received widespread attention witliin both tlie scientific and regulatoiy committees. It has also attracted tlie attention of the public. Properly conducted risk assessments have received fairly broad acceptance, in part because they put into perspective the terms to. ic, Itazard, and risk. Toxicity is an inlierent property of all substances. It states tliat all chemical and physical agents can produce adverse healtli effects at some dose or under specific exposure conditions. In contrast, exposure to a chemical tliat lias tlie capacity to produce a particular type of adverse effect, represents a health hazard. Risk, however, is tlie probability or likelihood tliat an adverse outcome will occur in a person or a group tliat is exposed to a particular concentration or dose of the hazardous agent. Tlierefore, risk can be generally a function of exposure and dose. Consequently, healtli risk assessment is defined as tlie process or procedure used to estimate tlie likelihood that... [Pg.287]

Thus, tlie focus of tliis subsection is on qualitative/semiquantitative approaches tliat can yield useful information to decision-makers for a limited resource investment. There are several categories of uncertainties associated with site risk assessments. One is tlie initial selection of substances used to characterize exposures and risk on tlie basis of the sampling data and available toxicity information. Oilier sources of uncertainty are inlierent in tlie toxicity values for each substance used to characterize risk. Additional micertainties are inlierent in tlie exposure assessment for individual substances and individual exposures. These uncertainties are usually driven by uncertainty in tlie chemical monitoring data and tlie models used to estimate exposure concentrations in tlie absence of monitoring data, but can also be driven by population intake parameters. As described earlier, additional micertainties are incorporated in tlie risk assessment when exposures to several substances across multiple patliways are suimned. [Pg.407]

Lay people and experts disagree on risk estimates for many eiivironincntal problems. This creates a problem, since die public generally does not trust the experts. This chapter concentrates on how the public views risk and what the future of public risk perception will be. The reader should note that much of diis material, as with die previous Section, applies to liazard risk assessment- a topic that is treated in Chapter 19, Ptirt IV. [Pg.408]

Lack of exposure data for most organotins together with limited toxicity information for marine organisms preclude the calculation of risk factors for the marine environment. For dibutyltin, measured concentrations in seawater reflect the use of tributyltin as a marine anti-foulant rather than the use of dibutyltin in plastics. It is therefore not possible to conduct a reliable risk assessment for the current uses of the compormd. [Pg.42]

The sheer complexity of environmental mixtnres of EDCs, possible interactive effects, and capacity of some EDCs to bioaccumulate (e.g., in fish, steroidal estrogens and alkylphenolic chemicals have been shown to be concentrated up to 40,000-fold in the bile [Larsson et al. 1999 Gibson et al. 2005]) raises questions about the adequacy of the risk assessment process and safety margins established for EDCs. There is little question that considerable further work is needed to generate a realistic pictnre of the mixture effects and exposure threats of EDCs to wildlife populations than has been derived from studies on individual EDCs. Further discussion of the toxicity of mixtures will be found in Chapter 2, Section 2.6. [Pg.284]

Monte Carlo simulation, an iterative technique which derives a range of risk estimates, was incorporated into a trichloroethylene risk assessment using the PBPK model developed by Fisher and Allen (1993). The results of this study (Cronin et al. 1995), which used the kinetics of TCA production and trichloroethylene elimination as the dose metrics relevant to carcinogenic risk, indicated that concentrations of 0.09-1.0 pg/L (men) and 0.29-5.3 pg/L (women) in drinking water correspond to a cancer risk in humans of 1 in 1 million. For inhalation exposure, a similar risk was obtained from intermittent exposure to 0.07-13.3 ppb (men) and 0.16-6.3 ppb (women), or continuous exposure to 0.01-2.6 ppb (men) and 0.03-6.3 ppb (women) (Cronin et al. 1995). [Pg.130]

Cyanide contamination creates special public information problems, e.g. it is difficult to explain why cyanide is not included in the current drinking water standards but that aquatic organisms are affected at relatively low cyanide concentration. There is confusion on whether fresh water standards are based on free or complexed cyanides. Fortunately, the provision of a permanent drinking water supply to each affected household removed risk assessment as a major issue. [Pg.25]

Today, when a pesticide with no detectable residues is registered for use, a Tolerance or maximum residue limit (MRL) is established at the lowest concentration level at which the method was validated. However, for risk assessment purposes it would be wrong to use this number in calculating the risk posed to humans by exposure to the pesticide from the consumption of the food product. This would be assuming that the amount of the pesticide present in all food products treated with the pesticide and for which no detectable residues were found is just less than the lowest level of method validation (LLMV). The assumption is wrong, but there is no better way of performing a risk assessment calculation unless the limit of detection (LOD) and limit of quantification (LOQ) of the method were clearly defined in a uniformly acceptable manner. [Pg.61]

Histological changes in the spleen related to diisopropyl methylphosphonate intake were not observed in male or female rats exposed to 1 mg/kg/day of diisopropyl methylphosphonate in their drinking water for 26 weeks (Army 1978). As discussed in Section 2.2.2.1, there is some confusion concerning the concentration units and purity of the diisopropyl methylphosphonate used in the Army (1978) study (EPA 1989), and therefore results from the Army (1978) study are considered inappropriate for human health risk assessment. No changes in spleen weight were noted in male or female mink exposed to... [Pg.55]


See other pages where Concentration risk assessment is mentioned: [Pg.239]    [Pg.132]    [Pg.523]    [Pg.445]    [Pg.2209]    [Pg.19]    [Pg.26]    [Pg.55]    [Pg.120]    [Pg.331]    [Pg.334]    [Pg.207]    [Pg.285]    [Pg.286]    [Pg.327]    [Pg.354]    [Pg.51]    [Pg.142]    [Pg.97]    [Pg.136]    [Pg.321]    [Pg.123]    [Pg.228]    [Pg.559]    [Pg.25]    [Pg.60]    [Pg.604]    [Pg.605]    [Pg.606]    [Pg.620]    [Pg.73]    [Pg.156]    [Pg.47]    [Pg.53]    [Pg.54]    [Pg.73]   
See also in sourсe #XX -- [ Pg.142 ]




SEARCH



Concentration, assessment

Reference concentration, risk assessment

Risk assessment methods concentration-exposure time

© 2024 chempedia.info