Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compressor protection

In particular it may be contentious to try and include an annualized figure for the cost of hazardous events. This is not so difficult to justify in the case of asset loss applications. For example the cost of failure of a turbo-compressor protection system can be measured as the price of a new rotor plus the cost of lost production. [Pg.300]

The autoclave is not the only component of an LDPE plant which may be exposed to a decomposition. Local hot spots in a secondary compressor may initiate a decomposition reaction consequendy it is necessary to protect these units from serious overpressure by pressure relieving devices and to release the products of the decomposition reactions safely. The problem of the aerial decomposition referred to eadier has been largely overcome by rapidly quenching the decomposition products as they enter the vent stack. [Pg.98]

Filtration and water-knockout systems are used to clean up the gas before it enters a compressor. Cooling systems are sometimes required to maintain compressor discharge temperatures below 54°C to avoid damage to the pipeline s protective coatings. Automated compressor stations are typically staffed by maintenance and repair personnel eight hours per day, five days per week. Other stations are staffed on a 24-hour basis because personnel must start, stop, and regulate compressors in response to orders from the dispatch office. [Pg.17]

For protection and temperature control of the compressor the follow ing safety devices may be provided ... [Pg.387]

The Guidelines for Process Equipment Reliability Data with Data Tables covers a variety of components used in the chemical process industry, including electrical equipment, analyzers, instrumentation and controls, detectors, heat exchangers, piping systems, rotating equipment (pump, compressor, and fan), valves, and fire protection systems. [Pg.9]

Cases (e), (g), and (h) are of interest in the cathodic protection of warm objects (e.g., district heating schemes [89] and high-pressure gas lines downstream from compressor stations [82]) because the media of concern can arise as products of cathodic polarization. The use of cathodic protection can be limited according to the temperature and the level of the mechanical stressing. The media in cases (a) and (f) are constituents of fertilizer salts in soil. Cathodic protection for group I is very effective [80]. [Pg.65]

Pumping or compressor stations are necessary for the transport of material in pipelines. These stations are usually electrically separated from the cathodically protected long-distance pipeline. The concrete foundations are much smaller than in power stations and refineries. Since the station piping is endangered by cell formation with the steel-reinforced concrete foundations, local cathodic protection is recommended. [Pg.317]

Gas compressor anti-surge (GM-OFF) control circuit, comprising transmitters, computers and pneumatic control valve Reverse flow protection (on axnal compressors only) as supplementary protection device against surging, working independently of the control circuit Expander emergency stop valve with pneumatic actuator and solenoid valve... [Pg.94]

Source John Hampel, Basic Turhocompressor Control and Protection, Turbomachinery International, July/August 1995, Compressor Controls Corporation, Des Moines, Iowa. [Pg.390]

The first objective of the antisurge control system is to protect the compressor. This can be accomplished for some disturbances by using the PI algorithm with a large value of bj. However, it is also necessary to maximize the region in which the compressor can operate with the recycle valve closed. This increases the efficiency of the compressor at lower throughputs. Steady-state operation with recycle is extremely inefficient. Therefore, from this perspective, small values of bj are highly desirable. [Pg.394]

The surge protection described above is for a simple, single section, constant geometry compressor with constant inlet conditions and constant speed of rotation. Many compressor installations involve more complex configurations and applications. [Pg.398]

While protecting the compressor from surge is the most compelling control problem, it is not the only requirement. The compressor throughput must be adjusted to match its load. Capacity control interacts with surge protection, which reduces the effectiveness of the antisurge control system if they are not decoupled. [Pg.400]

Capacity control is more complex in compressor networks where two or more compressors operate in series or parallel. Automatic distribution of the load between compressors is required. The antisurge and load sharing control loops must be coordinated to ensure surge protection while tlie load distribution and energy consumption are optimized. [Pg.400]

U.S. Environmental Protection Agency regulations for commercial, jet, and turbine-powered aircraft (3) are based on engine size (thrust) and pressure ratio (compressor outlet/compressor inlet) for the time in each mode of a standardized takeoff and landing cycle. Once the aircraft exceeds an altitude of 914 m, no regulations apply. [Pg.527]

Lavoie, R., and McMordie, B.G., Measuring Surface Finish of Compressor Airfoils Protected by Environmentally Resistant Coatings, 30th Annual Aerospace/Airline Plating and Metal Finishing Forum, April 1994. [Pg.435]

Inlet startup screens have been recommended for other compressors covereii in the earlier chapters. If the point has not been made yet. n should be with the axial compressors. Considering that most of the cost of the compressor is in the hundreds of vulnerable blades just waiting to be hit by some foreign object, it should be obvious that some protection is needed until the piping has been proven to be clear and clean. [Pg.246]

A PR valve is not required for protection against fire on any vessel which normally contains little or no liquid, since failure of the shell from overheating would occur even if a PR valve where provided. Examples are fuel gas knockout drums and compressor suction knockout drums. (Note Some local codes require pressure relief valve protection for "dry drum" situations.)... [Pg.123]

Low-pressure stage casings and interstage circuits on both centrifugal and positive displacement multi-stage compressors are not normally designed for full discharge pressure and must also be provided with overpressure protection. [Pg.139]

A suction pressure throttling valve can also be installed to protect the compressor from too high a suction pressure. This is typically a butterfly valve that is placed in the suction piping. As flow rate to the compressor increases, the valve will close slightly and maintain a constant suction pressure. This will automatically limit the flow rate to exactly that rate where the actual volume of gas equals that required by the cylinder at tlie chosen suction pressure setting. It will not allow the suction pressure to increase and the compressor cylinder to thus handle more flow rate. [Pg.278]

Suction throttle valves are common in gas-lift service to minimi/c the action of the flare valve. Flow from gas-lift wells decreases with increased back-pressure. If there were no suction valve, the flare valve may have to be set at a low pressure to protect the compressor. With a suction valve it may be possible to set the flare valve at a much higher pressure slightly below the working pressure of the low-pressure separator. The difference between the suction valve set pressure and the flare valve set pressure provides a surge volume for gas and helps even the flow to the compressor. [Pg.278]

Often, the blowdown valve is routed to a closed flare system, which services other relief valves in the facility to ensure drat all the gas is vented or flared at a safe location. In such instances, a separate manual blow -down valve piped directly to atmosphere, with nothing else lied in, is also needed. After the compressor is shut down and safely blown down through the flare system, the normal blowdown valve must be closed to block any gas that may enter the flare system from other relief valves. The manual blowdown valve to atmosphere protects the operators from small leaks into the compressor during maintenance operations. [Pg.279]

Available horsepower from a gas turbine is a function of air compressor pressure ratio, combustor temperature, air compressor and turbine efficiencies, ambient temperature, and barometric pressure. High ambient temperatures and/or low barometric pressure will reduce available horsepower while low ambient temperatures and/or high barometric pressure will increase available horsepower. All industrial turbines will have high-temperature protection, but in areas subject to very low ambient temperatures horsepower limiting may be required. [Pg.482]

The compressor was fitted with a protective system that should have made it impossible to start the machine with the barring gear engaged. But the protective system was out of order. It was not tested regularly. [Pg.278]


See other pages where Compressor protection is mentioned: [Pg.54]    [Pg.54]    [Pg.503]    [Pg.79]    [Pg.1]    [Pg.1143]    [Pg.309]    [Pg.101]    [Pg.124]    [Pg.392]    [Pg.397]    [Pg.431]    [Pg.219]    [Pg.259]    [Pg.462]    [Pg.137]    [Pg.139]    [Pg.144]    [Pg.149]    [Pg.150]    [Pg.366]    [Pg.461]    [Pg.305]    [Pg.32]    [Pg.835]   
See also in sourсe #XX -- [ Pg.124 ]




SEARCH



A Gas Compressor Is Protected from Dirt, But the Plant Catches Fire

© 2024 chempedia.info