Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multifunctional Compounds

An example of using one predicted property to predict another is predicting the adsorption of chemicals in soil. This is usually done by first predicting an octanol water partition coelficient and then using an equation that relates this to soil adsorption. This type of property-property relationship is most reliable for monofunctional compounds. Structure-property relationships, and to a lesser extent group additivity methods, are more reliable for multifunctional compounds than this type of relationship. [Pg.121]

Multifunctional Hydroxy, Mercapto, and Amino Compounds. These are used to cross-link halogenated polymers. Depending on the labihty of the halogen, the cross-linking agents can be capped to reduce reactivity or used in combination with accelerators to increase the rate of reaction. Benzoyl capping is common with hydroxy and mercapto compounds forming the carbamate by reaction with one equivalent of carbon dioxide is used with diamines. [Pg.225]

Olefin isomerization can be catalyzed by a number of catalysts such as molybdenum hexacarbonyl [13939-06-5] Mo(CO)g. This compound has also been found to catalyze the photopolymerization of vinyl monomers, the cyclization of olefins, the epoxidation of alkenes and peroxo species, the conversion of isocyanates to carbodiimides, etc. Rhodium carbonylhydrotris(triphenylphosphine) [17185-29-4] RhH(CO)(P(CgH )2)3, is a multifunctional catalyst which accelerates the isomerization and hydroformylation of alkenes. [Pg.172]

When only one carbonyl or hydroxyl group is to be blocked in a multifunctional compound, the choice of the protecting group will be determined by the ease with which the group can be introduced selectively into the parent molecule. [Pg.375]

Photochrome flavylium compounds as multistate/multifunction molecular-level systems 99CC107. [Pg.260]

An alkene activated by an electron-withdrawing group—often an acrylic ester 2 is used—can react with an aldehyde or ketone 1 in the presence of catalytic amounts of a tertiary amine, to yield an a-hydroxyalkylated product. This reaction, known as the Baylis-Hillman reaction, leads to the formation of useful multifunctional products, e.g. o -methylene-/3-hydroxy carbonyl compounds 3 with a chiral carbon center and various options for consecutive reactions. [Pg.28]

The success of intramolecular conjugate additions of carbon-centered radicals in multifunctional contexts is noteworthy. Compound 57 (see Scheme 10), prepared by an interesting sequence starting from meto-toluic acid (54) (see 54 > 55 > 56 > 57), can be converted to the highly functionalized perhydroindane 58 through an intramolecular conjugate addition of a hindered secondary radical.21-22 This radical cyclization actually furnishes a 6 1 mixture of perhydroindane diastereoisomers, epimeric at C-7, in favor of 58 (96 % total yield). It should be noted that a substantially less strained cis-fused bicyclo[4.3.0] substructure is formed in this cyclization. [Pg.390]

Polymeric azo-compounds and multifunctional initiators with azo-linkages are discussed elsewhere (see 3.3.3 and 7.6.1) as are azo compounds, which find use as iniferters (see 9.3.4). [Pg.68]

The multifunctional initiators may be di- and tri-, azo- or peroxy-compounds of defined structure (c.g. 20256) or they may be polymeric azo- or peroxy-compounds where the radical generating functions may be present as side chains 57 or as part of the polymer backbone."58"261 Thus, amphiphilic block copolymers were synthesized using the polymeric initiator 21 formed from the reaction between an a,to-diol and AIBN (Scheme 7.22).26 Some further examples of multifunctional initiators were mentioned in Section 3.3.3.2. It is also possible to produce less well-defined multifunctional initiators containing peroxide functionality from a polymer substrate by autoxidalion or by ozonolysis.-0... [Pg.386]

There is an extremely wide range of potentially useful chemical treatments available, and for any boiler system, proper selection, utilization, and control are vital considerations that may largely determine the ultimate success of the overall program. These chemicals usually are organized by type of compound, function, mode of action, or similar classification, but, because many chemicals are multifunctional in character, may be used in either a primary or supplementary (adjunct or conjunctional treatment) role, and additionally may be branded (especially many modem polymers) or otherwise disguised, such classifications may be quite arbitrary. [Pg.385]

Furthermore, the biocatalysts will be even more important with the shift of the raw materials from oil to biomass. Since biomass is a mixture of various multifunctional compounds, chemo-, regio-, and enantioselective catalysts will be... [Pg.224]

Several dozens of aldolases have been identified so far in nature [23,24], and many of these enzymes are commercially available at a scale sufficient for preparative applications. Enzyme catalysis is more attractive for the synthesis and modification of biologically relevant classes of organic compounds that are typically complex, multifunctional, and water soluble. Typical examples are those structurally related to amino acids [5-10] or carbohydrates [25-28], which are difficult to prepare and to handle by conventional methods of chemical synthesis and mandate the laborious manipulation of protective groups. [Pg.275]

Phenol, the simplest and industrially more important phenolic compound, is a multifunctional monomer when considered as a substrate for oxidative polymerizations, and hence conventional polymerization catalysts afford insoluble macromolecular products with non-controlled structure. Phenol was subjected to oxidative polymerization using HRP or soybean peroxidase (SBP) as catalyst in an aqueous-dioxane mixture, yielding a polymer consisting of phenylene and oxyphenylene units (Scheme 19). The polymer showed low solubility it was partly soluble in DMF and dimethyl sulfoxide (DMSO) and insoluble in other common organic solvents. [Pg.229]

Improve adhesion of dissimilar materials such as polymers to inorganic substrates. Also called primers. Primers generally contain a multifunctional chemically reactive species capable of acting as a chemical bridge. In theory, any polar functional group in a compound may contribute to improved bonding to mineral surfaces. However, only a few organofunc-tional silanes have the balance of characteristics required... [Pg.773]

The photoinitiator selected for this study was 1-benzoyl cyclohexanol (Irgacure 184 from Ciba Geigy), a compound known for its high initiation efficiency and the weak coloration of its photoproducts. The multifunctional monomer was an epoxy-diacrylate derivative of bis-phenol A (Ebecryl 605 from UCB). A reactive diluent, tripropyleneglycol diacrylate, had to be introduced in equal amounts, in order to lower the viscosity of the formulation to about 0.3 Pa.s. [Pg.213]

Despite the popularity of the chlorination-Hercosett route, it is clear that AOX problems will often enforce the adoption of alternatives, many of which have already been developed. Non-AOX polymers include polyethers, polyurethanes, polysiloxanes, polyquaternary compounds and multifunctional epoxides. [Pg.165]

In order to simplify the experimental problems involved in unravelling the mechanisms of UV protection by the piperidines, we have concentrated on the use of the simpler monopiperidine compounds. Although our findings are relevant to the photoprotection by the more complex multifunctional, commercial additives, some major differences may exist, and will be emphasized together with the very significant effects of the solid state on photo-stabilization. [Pg.52]

These compounds are multifunctional additives. They can act as heat stabilisers, radical traps, decompose hydroperoxides, UV absorbers, etc. (iv) UV absorbers. This is the largest class of UV stabilisers. They work on the same principle as sun-screen lotions they contain chromophores that can absorb light in the 280-400 nm region and release the excess energy as heat and not high-energy radiation. They must be stable under processing conditions and should not react with the polymer nor decompose with UV radiation. [Pg.106]

Summary Multifunctional (meth)acrylate alkoxysilanes synthesized from commercially available acrylate compounds and mercapto-substituted alkoxysilanes or hydrosilanes are used as novel precursors for inorganic-organic copolymers. The alkoxysilyl groups are available for the formation of an inorganic Si-O-Si backbone by sol-gel processing. The (meth)acrylate groups allow the additional formation of organic polymer units by thermally or photochemically induced polymerisation reactions. [Pg.301]

Multifunctional (meth)acrylate alkoxysilanes were developed, a new class of reactive compounds. Compared with commercially available organo(alkoxy)silanes having reactive C=C bonds in the organic substituent, the new compounds can be varied to a much higher degree. The main improvements are ... [Pg.301]


See other pages where Multifunctional Compounds is mentioned: [Pg.202]    [Pg.132]    [Pg.202]    [Pg.132]    [Pg.48]    [Pg.349]    [Pg.482]    [Pg.363]    [Pg.369]    [Pg.371]    [Pg.1]    [Pg.434]    [Pg.484]    [Pg.31]    [Pg.10]    [Pg.1]    [Pg.255]    [Pg.528]    [Pg.355]    [Pg.247]    [Pg.231]    [Pg.484]    [Pg.244]    [Pg.517]    [Pg.96]    [Pg.681]    [Pg.712]    [Pg.245]    [Pg.721]    [Pg.722]    [Pg.723]    [Pg.785]    [Pg.500]   
See also in sourсe #XX -- [ Pg.26 ]

See also in sourсe #XX -- [ Pg.26 ]




SEARCH



1.2- Dithiolenes multifunctional compounds

ILs-Based Multifunctional Compounds for Electrocatalysis and Biosensors

Multifunctional

Multifunctional Molecular-level Systems - Photochromic Flavylium Compounds

© 2024 chempedia.info