Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compounds, colored amines

Both of these dyes, that from m-phenylenediamine and that from toluylenedi-amine, are used in large quantities in the preparation of compound colors. [Pg.159]

The urea-formaldehydes (UFs) are the most important and most used class of amino resin adhesives. Amino resins are polymeric condensation products of the reaction of aldehydes with compounds carrying aminic or amidic groups. Formaldehyde is by far the primary aldehyde used. The advantage of UF adhesives are their (1) initial water solubility (this renders them eminently suitable for bulk and relatively inexpensive production), (2) hardness, (3) nonflammability, (4) good thermal properties, (5) absence of color in cured polymers, and (6) easy adaptability to a variety of curing conditions [1,2]. [Pg.628]

Hydantoin itself can be detected ia small concentrations ia the presence of other NH-containing compounds by paper chromatography followed by detection with a mercury acetate—diphenylcarba2one spray reagent. A variety of analytical reactions has been developed for 5,5-disubstituted hydantoias, due to their medicinal iaterest. These reactions are best exemplified by reference to the assays used for 5,5-diphenylhydantoiQ (73—78), most of which are based on their cycHc ureide stmcture. Identity tests iaclude the foUowiag (/) the Zwikker reaction, consisting of the formation of a colored complex on treatment with cobalt(II) salts ia the presence of an amine (2) formation of colored copper complexes and (3) precipitation on addition of silver(I) species, due to formation of iasoluble salts at N. ... [Pg.255]

Toxic or malodorous pollutants can be removed from industrial gas streams by reaction with hydrogen peroxide (174,175). Many Hquid-phase methods have been patented for the removal of NO gases (138,142,174,176—178), sulfur dioxide, reduced sulfur compounds, amines (154,171,172), and phenols (169). Other effluent treatments include the reduction of biological oxygen demand (BOD) and COD, color, odor (142,179,180), and chlorine concentration. [Pg.481]

Air Monitoring. The atmosphere in work areas is monitored for worker safety. Volatile amines and related compounds can be detected at low concentrations in the air by a number of methods. Suitable methods include chemical, chromatographic, and spectroscopic techniques. For example, the NIOSH Manual of Analytical Methods has methods based on gas chromatography which are suitable for common aromatic and aHphatic amines as well as ethanolamines (67). Aromatic amines which diazotize readily can also be detected photometrically using a treated paper which changes color (68). Other methods based on infrared spectroscopy (69) and mass spectroscopy (70) have also been reported. [Pg.264]

The photolysis of polyhalogenated compounds forms the basis for another monochrome system. Iodoform can undergo photolysis to produce hydrogen iodide, which subsequendy reacts with a di(2-furfuryl) derivative (3) and aromatic amines to produce a colored dye adduct (4) (29). The photolysis scheme and subsequent reactions can be shown by the following ... [Pg.39]

There are no universally accepted wet analytical methods for the characteri2ation of quaternary ammonium compounds. The American Oil Chemists Society (AOCS) has estabhshed, however, a number of appHcable tests (180). These include sampling, color, moisture, amine value, ash, iodine value, average molecular weight, pH, and flash point. [Pg.378]

Dyes. Sodium nitrite is a convenient source of nitrous acid in the nitrosation and diatozation of aromatic amines. When primary aromatic amines react with nitrous acid, the intermediate diamine salts are produced which, on coupling to amines, phenols, naphthols, and other compounds, form the important azo dyes (qv). The color center of the dye or pigment is the -N=N- group and attached groups modify the color. Many dyes and pigments (qv) have been manufactured with shades of the entire color spectmm. [Pg.200]

The starting materials of the aldehyde method may be sulfonated. For example. Cl Acid Blue 9 [2650-18-2] Cl Food Blue 2 (Cl 42090), is manufactured by condensing a-(A/-ethylanilino)-y -toluenesulfonic acid with o-sulfobenzaldehyde. The leuco base is oxidized with sodium dichromate to the dye, which is usually isolated as the ammonium salt. In this case, the removal of the excess amine is not necessary. However, this color caimot be used in the food sector because separation of the chromium compounds from the dye is difficult. An alternative method which gives food-grade Cl Acid Blue 9 (14) and dispenses with the use of sodium dichromate employs oxidative electrolysis of the leuco base (49). [Pg.271]

These compounds are used most frequentiy in combination with hindered phenols for a broad range of apphcations in mbber and plastics. They are also able to suppress color development caused by oxidation of the substrate and the phenoHc antioxidant. Unlike phenols and secondary aromatic amines, phosphoms-based stabilizers generally do not develop colored oxidation products. [Pg.227]

Fast Color Salts. In order to simplify the work of the dyer, diazonium salts, in the form of stable dry powders, were introduced under the name of fast color salts. When dissolved in water they react like ordinary diazo compounds. These diazonium salts, derived from amines, free from solubilizing groups, are prepared by the usual method and are salted out from the solutions as the sulfates, the metallic double salts, or the aromatic sulfonates. The isolated diazonium salt is sold in admixture with anhydrous salts such as sodium sulfate or magnesium sulfate. [Pg.445]

Voluminous corrosion products are usually absent, as most copper amine complexes are quite soluble. Adjacent to corroded areas, one often finds small amounts of corrosion products and deposits colored a vivid blue-green by compounds containing liberated copper ion. [Pg.193]

Aromatic nitro compounds are often strongly colored. They frequently produce characteristic, colored, quinoid derivatives on reaction with alkali or compounds with reactive methylene groups. Reduction to primary aryl amines followed by diazotization and coupling with phenols yields azo dyestuffs. Aryl amines can also react with aldehydes with formation of Schiff s bases to yield azomethines. [Pg.66]

Tetracyanoethylene yields a colored it-complex with aromatic compounds in the case of aromatic amines, phenols and indoles these then react to yield the corresponding tricyanovinyl derivatives [3, 4]. [Pg.416]

In context with the formation of peraminosubstituted 1,4,5,8-tetraazaful-valenes of type 85 it must be mentioned that the bis-vinylogous compounds 94 can be easily prepared by reaction of acetamidine with bisimidoylchlo-rides derived from oxalic acid (96S1302). In the course of a complex reaction a cyclic ketene aminal was produced it immediately underwent an oxidative dimerization to yield deeply colored TAFs. Tlieir high chemical stability can be compared with that of indigoid dyes and manifests itself, for example, by the fact that they are soluble in hot concentrated sulfuric acid without decomposition. Tire same type of fulvalene is also available by cy-... [Pg.143]

Aliphatic primary and secondary amines primarily react with the diazonium compound fast black salt K to yield colored triazene derivatives [1] according to the following scheme ... [Pg.142]

Note Tertiary amines and quaternary ammonium compounds yield stronger colors than primary amines [25]. The dipping solution can also be used as spray solution [44]. Other reagent compositions have also been reported in the literature (1, 3, 6, 12, 13, 15, 18, 21, 23, 41] In some cases the reagents have been made up in acetone [38, 39], methanol [14] or ethanol [37] and/or acidified with hydrochloric acid [3, 33, 37-40]. The concentrations of hexachloroplatinic(IV) acid have been in the range of 0.05 -0.4 those of potassium iodide between 0.5 and 24spray solution containing 2% potassium iodide and 0.23170 hexachloroplatinic(IV) acid hexahydrate in N-hydro-chloric acid is reported to yield the best coloration results with respect to detection sensitivity and color differentiation in the detection of morphine, codeine, quinine, methadone and cocaine [46]. Acidic reagent solutions have been recommended for benzodiazepines [10, 11]. Sulfones do not react [39]. [Pg.188]

Tin(II) chloride reduces aromatic nitro compounds to the corresponding amines, these then react with 4-(dimethylamino)-benzaldehyde to yield colored Schiff s bases. [Pg.221]


See other pages where Compounds, colored amines is mentioned: [Pg.139]    [Pg.120]    [Pg.1162]    [Pg.23]    [Pg.329]    [Pg.120]    [Pg.156]    [Pg.120]    [Pg.193]    [Pg.481]    [Pg.257]    [Pg.400]    [Pg.256]    [Pg.499]    [Pg.15]    [Pg.447]    [Pg.572]    [Pg.111]    [Pg.41]    [Pg.11]    [Pg.444]    [Pg.294]    [Pg.101]    [Pg.128]    [Pg.103]    [Pg.17]    [Pg.121]    [Pg.570]    [Pg.449]    [Pg.786]   
See also in sourсe #XX -- [ Pg.11 , Pg.381 ]




SEARCH



Amination compounds

Amine compounds

Color compounding

Colored compounds

Compounding coloring

© 2024 chempedia.info