Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Natural rubber composition

Polymers of chloroprene (structure [XII]) are called neoprene and copolymers of butadiene and styrene are called SBR, an acronym for styrene-butadiene rubber. Both are used for many of the same applications as natural rubber. Chloroprene displays the same assortment of possible isomers as isoprene the extra combinations afforded by copolymer composition and structure in SBR offsets the fact that structures [XIIll and [XIV] are identical for butadiene. [Pg.29]

In all the compositions, the DCP-cured blends showed better properties than the corresponding unvulcanized samples. Choudhary et al. [30] further demonstrated the use of EPDM, chlorinated PE, chlorosulfo-nated PE, maleic anhydride modified polyethylene, and blends of epoxidized natural rubber-sulfonated EPDM as compatibilizers in NR-LDPE (low-density PE) blends. [Pg.640]

The pneumatic tire has the geometry of a thin-wallcd toroidal shell. It consists of as many as fifty different materials, including natural rubber and a variety ot synthetic elastomers, plus carbon black of various types, tire cord, bead wire, and many chemical compounding ingredients, such as sulfur and zinc oxide. These constituent materials are combined in different proportions to form the key components of the composite tire structure. The compliant tread of a passenger car tire, for example, provides road grip the sidewall protects the internal cords from curb abrasion in turn, the cords, prestressed by inflation pressure, reinforce the rubber matrix and carry the majority of applied loads finally, the two circumferential bundles of bead wire anchor the pressnrized torus securely to the rim of the wheel. [Pg.1140]

Entrained gas and air expands under the reduced pressure of the suction stroke, lowering the suction efficiency. Gas in water-base mud may also deteriorate the natural rubber parts used. Gases are usually separated with baffles or by changing mud composition. [Pg.630]

Handbook of elastomers , A.K. Bhowmick and H.L. Stephens Marcel Dekker (1988) Series Plastics Engineering, Volume 19 ISBN 0824778006. This handbook systematically addresses the manufacturing techniques, properties, processing, and applications of rubbers and rubber-like materials. The Handbook of Elastomers provides authoritative information on natural rubbers, synthetic rubbers, liquid rubbers, powdered rubbers, rubber blends, thermoplastic elastomers, and rubber-based composites— offering solutions to many practical problems encountered with rubber materials. [Pg.601]

Non-metallic Materials Carbides, carbon, ceramic fiber, ceramic, cermet, composite, cork, elastomer, felt, fiber, glass, glycerin, non-metallic bearing material, rubber (natural), rubber (synthetic), silicone, wood, leather. [Pg.601]

Polysaccharides such as starch and cellulose have been used as reinforcing agents in natural rubber. Both solution blending and dry mixing methods have been employed for the development of biocomposites and the performance compared with the composites obtained using carbon black. Dry mixing method is more economically viable and environment friendly. [Pg.122]

The results of mechanical properties (presented later in this section) showed that up to 20 phr, the biofillers showed superior strength and elongation behavior than CB, cellulose being the best. After 30 phr the mechanical properties of biocomposites deteriorated because of the poor compatibility of hydrophilic biopolymers with hydrophobic natural rubber(results not shown). While increasing quantity of CB in composites leads to constant increase in the mechanical properties. Scanning electron micrographs revealed presence of polymer-filler adhesion in case of biocomposites at 20 phr. [Pg.122]

FIGURE 3.12 Morphology of mbber-silica hybrid composites synthesized from solution process using different solvents (a) and (b) are the scanning electron microscopic (SEM) pictures of acrylic rubber (ACM)-silica hybrid composites prepared from THF (T) and ethyl acetate (EAc) (E) and (c) and (d) are the transmission electron microscopic (TEM) pictures of epoxidized natural rubber (ENR)-siUca hybrid composites synthesized from THF and chloroform (CH). (From Bandyopadhyay, A., De Sarkar, M., and Bhowmick, A.K., J. Appl. Polym. Sci., 95, 1418, 2005 and Bandyopadhyay, A., De Sarkar, M., and Bhowmick, A.K., J. Mater. Sci., 40, 53, 2005. Courtesy of Wiley InterScience and Springer, respectively.)... [Pg.69]

FIGURE 3.16 Morphology and visual appearance of acrylic rubber (ACM)-silica and epoxidized natural rubber (ENR)-silica hybrid composites prepared from different pH ranges (a) transmission electron microscopic (TEM) picture of ACM-siUca in pH 1.0-2.0, (b) scanning electron microscopic (SEM) picture of ACM-siUca in pH 5.0-6.0, (c) SEM image of ACM-siUca in pH 9.0-10.0, (d) TEM picture of ENR-silica in pH... [Pg.74]

Chemical pretreatments with amines, silanes, or addition of dispersants improve physical disaggregation of CNTs and help in better dispersion of the same in rubber matrices. Natural rubber (NR), ethylene-propylene-diene-methylene rubber, butyl rubber, EVA, etc. have been used as the rubber matrices so far. The resultant nanocomposites exhibit superiority in mechanical, thermal, flame retardancy, and processibility. George et al. [26] studied the effect of functionalized and unfunctionalized MWNT on various properties of high vinyl acetate (50 wt%) containing EVA-MWNT composites. Figure 4.5 displays the TEM image of functionalized nanombe-reinforced EVA nanocomposite. [Pg.92]

Generally speaking, commercial rubber products are manufactured as a composite from a rubber and a nano-filler, which is in a group of fillers of nanometer size (mainly, carbon black and particulate silica). For an example, a pneumatic tire for heavy-duty usages such as aircrafts and heavyweight tracks is made from natural rubber (NR) and carbon black and/or silica. Their reinforcing ability onto rubbers makes them an indispensable component in the rubber products [1,2]. [Pg.543]

There are a number of papers in the open literature explicitly reporting on the properties of boron cluster compounds for potential neutron capture applications.1 Such applications make full use of the 10B isotope and its relatively high thermal neutron capture cross section of 3.840 X 10 28 m2 (barns). Composites of natural rubber incorporating 10B-enriched boron carbide filler have been investigated by Gwaily et al. as thermal neutron radiation shields.29 Their studies show that thermal neutron attenuation properties increased with boron carbide content to a critical concentration, after which there was no further change. [Pg.113]

As illustrated in Figure 10.2, many composite applications utilize a caul plate or pressure intensifier. Caul plates result in a greatly improved part surface finish compared with a bag surface, improved dimensional control, and improved radius quality. Caul plates are also used to reduce ply movement during processing of honeycomb reinforced parts. Caul plates may be semi-rigid or rigid in nature. Semi-rigid caul plates, which are the most common type, are typically constructed of thin metal, composite, or rubber materials so they are flexible in... [Pg.303]

A pressure-sensitive self-adhesive composition capable of compensating for substrate unevennesses was prepared by Massow et al. (2) and consisted of natural rubber and tackiher resins. [Pg.66]

The effect of polymer-filler interaction on solvent swelling and dynamic mechanical properties of the sol-gel-derived acrylic rubber (ACM)/silica, epoxi-dized natural rubber (ENR)/silica, and polyvinyl alcohol (PVA)/silica hybrid nanocomposites was described by Bandyopadhyay et al. [27]. Theoretical delineation of the reinforcing mechanism of polymer-layered silicate nanocomposites has been attempted by some authors while studying the micromechanics of the intercalated or exfoliated PNCs [28-31]. Wu et al. [32] verified the modulus reinforcement of rubber/clay nanocomposites using composite theories based on Guth, Halpin-Tsai, and the modified Halpin-Tsai equations. On introduction of a modulus reduction factor (MRF) for the platelet-like fillers, the predicted moduli were found to be closer to the experimental measurements. [Pg.7]

ELASTOMERS. Of natural or synthetic origin, an elastomer is a polymer possessing clastic (rubbery) properties. A polymer is a substance consisting of molecules which are. in the most part, multiples of low-molecular-weight units, or monomers. As an example, isoprcnc (2-methylbutadiene-1,3) is C 2 and normally is from 1,000 to 10.000 for rubbers. Although they differ in composition from natural rubber, many of these high-molecular-weight materials are termed. synthetic lubbers. See also Rubber (Natural). [Pg.540]


See other pages where Natural rubber composition is mentioned: [Pg.127]    [Pg.860]    [Pg.865]    [Pg.471]    [Pg.365]    [Pg.835]    [Pg.1308]    [Pg.112]    [Pg.300]    [Pg.227]    [Pg.51]    [Pg.347]    [Pg.324]    [Pg.427]    [Pg.88]    [Pg.358]    [Pg.97]    [Pg.86]    [Pg.162]    [Pg.39]    [Pg.45]    [Pg.179]    [Pg.27]    [Pg.104]    [Pg.43]    [Pg.95]    [Pg.149]    [Pg.171]    [Pg.118]    [Pg.60]   
See also in sourсe #XX -- [ Pg.347 ]




SEARCH



Applications of Natural Rubber Composites and Nanocomposites

Biofiber-reinforced natural rubber composites

ESR Studies of Natural Rubber Composites and Nanocomposites

Nanosilica-filled natural rubber composites

Natural Rubber Composites and Nanocomposites

Natural composites

Natural composition

Natural fiber filled rubber composites

Natural rubber composites

Natural rubber composites

Natural rubber composites carbon black

Natural rubber composites cure characteristics

Natural rubber composites fibre loading

Natural rubber composites silica

Natural rubber general composition

Natural-Rubber-Based Compositions

Nature, composites

Properties of Natural Rubber Composites Filled with Macro- and Nanofillers

Rayon-natural rubber composite

Rheological Behaviour of Natural Rubber Based Composites and Nanocomposites

Rubber composites

Rubber compositions

Wood/natural rubber composite

© 2024 chempedia.info