Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Composite materials features

The fundamental objective in this section is to describe the factors and procedures to select the right material for a specific structural application. The right stuff for a material, as for a fighter pilot or an astronaut, is a complex combination of characteristics. To select the proper material requires being able to characterize and evaluate various composite materials (or metalsl) and to compare their attractive characteristics with the behavioral features required for a particular structure. Finally, a materials selection example of a space truss design problem will be addressed. [Pg.389]

Vectors are commonly used for description of many physical quantities such as force, displacement, velocity, etc. However, vectors alone are not sufficient to represent all physical quantities of interest. For example, stress, strain, and the stress-strain iaws cannot be represented by vectors, but can be represented with tensors. Tensors are an especially useful generalization of vectors. The key feature of tensors is that they transform, on rotation of coordinates, in special manners. Tsai [A-1] gives a complete treatment of the tensor theory useful in composite materials analysis. What follows are the essential fundamentals. [Pg.472]

Miscibility or compatibility provided by the compatibilizer or TLCP itself can affect the dimensional stability of in situ composites. The feature of ultra-high modulus and low viscosity melt of a nematic liquid crystalline polymer is suitable to induce greater dimensional stability in the composites. For drawn amorphous polymers, if the formed articles are exposed to sufficiently high temperatures, the extended chains are retracted by the entropic driving force of the stretched backbone, similar to the contraction of the stretched rubber network [61,62]. The presence of filler in the extruded articles significantly reduces the total extent of recoil. This can be attributed to the orientation of the fibers in the direction of drawing, which may act as a constraint for a certain amount of polymeric material surrounding them. [Pg.598]

The extreme climatic and physical environments in which propellers operate test the limits of aerodynamics, mechanical engineering, and structural theory. Depending upon the size of the power source, aerial propellers can he made from wood, metal, or composite materials and feature from two to six long... [Pg.959]

Conducting polymer composite materials (CPCM) — artificial media based on polymers and conductive fillers, have been known since the early 1940s and widely used in various branches of science and technology. Their properties are described in a considerable number of monographs and articles [1-12]. However, the publications available do not clearly distinguish such materials from other composites and do not provide for specific features of their formation. [Pg.126]

Within the scope of this review, the contributions of the last decade concerning cell-wall polysaccharides isolated from woody and other plant tissues will be reviewed according to the above-proposed classification of hemicelluloses including larch arabinogalactans. The present review article updates and extends previous reviews [3-5] and will focus in particular on new investigated plant sources, isolation methods, structural features, physicochemical and various functional properties of hemicelluloses. Attention will also be paid to the modification of isolated hemicelluloses or hemicellulosic materials and the appHcation possibiUties of hemicelluloses and their derivatives, including their use for the production of composite materials and other biomaterials. [Pg.5]

However, not all properties are improved by filler. One notable feature of the mechanical behaviour of filled elastomers is the phenomenon of stresssoftening. This manifests itself as a loss of stiffness when the composite material is stretched and then unloaded. In a regime of repeated loading and unloading, it is found that part of the second stress-strain curve falls below the original curve (see Figure 7.13). This is the direct opposite of what happens to metals, and the underlying reasons for it are not yet fully understood. [Pg.114]

Performance of polymers during use is a key feature of any composite material, which decides the real fate of products in outdoor applications. Whatever the application, there is concern regarding the durability of polymers, partly because of their useful lifetime, maintenance and replacement. The deterioration of these materials depends on the duration and extent of interaction with the environment (Homminga et ah, 2005). [Pg.31]

Furthermore, a cell header with its 70-100 connections is not easy to replace, and considerable numbers of safety features have to be incorporated into its design. Composite materials do not lend themselves to effective non-destructive testing and a leaking joint may lead to delamination of the chemical-resistant liner from its mechanical support. Since any leaks cannot be detected easily in such circumstances, the entire header must be replaced with a corresponding electrolyser downtime. [Pg.302]

Poly(propylene amine) dendrimers containing 4, 8, and 64 amidoferrocene peripheral units have also been incorporated in the highly ordered channels of mesoporous silica obtaining a novel type of redox-active materials. One significant feature of these new composite materials is that the ferrocene units of the guest dendrimers are easily accessible to electrochemical oxidation, as revealed by studies carried out in MeCN solutions by using Pt electrodes derivatized with films of such dendrimer-matrix complexes.33... [Pg.154]

It thus appears that there may be a basis for some predictions which can guide in the selection of components for composite materials, but the theoretical basis for discussions goes always back to the principles of the volcano curve in the sense that a relative increase or decrease in activity is customarily explained by recurring to the features of such a curve [92], Therefore, a theory is needed to describe the dependence of the adsorption strength of hydrogen on the electronic properties of composite materials. However, before a sound theory can be proposed, it is necessary that the experimental picture be freed from the many obscurities, ambiguities and irreproducibilities due to the scarce characterization of the surface of various materials, and to the insufficient identification of various factors which can influence electrode kinetics. [Pg.10]

This new book focuses on the fundamental understanding of composite materials at the microscopic scale, from designing microstructural features, to the predictive equations of the functional behaviour of the stmcture for a specific end-application. The papers presented discuss stress and temperature-related behavioural phenomena based on knowledge of physics of microstructure and microstructural change over time. [Pg.598]

As previously noted, this chapter has been concerned mainly with those models for the creep of ceramic matrix composite materials which feature some novelty that cannot be represented simply by taking models for the linear elastic properties of a composite and, through transformation, turning the model into a linear viscoelastic one. If this were done, the coverage of models would be much more comprehensive since elastic models for composites abound. Instead, it was decided to concentrate mainly on phenomena which cannot be treated in this manner. However, it was necessary to introduce a few models for materials with linear matrices which could have been developed by the transformation route. Otherwise, the discussion of some novel aspects such as fiber brittle failure or the comparison of non-linear materials with linear ones would have been incomprehensible. To summarize those models which could have been introduced by the transformation route, it can be stated that the inverse of the composite linear elastic modulus can be used to represent a linear steady-state creep coefficient when the kinematics are switched from strain to strain rate in the relevant model. [Pg.329]


See other pages where Composite materials features is mentioned: [Pg.39]    [Pg.40]    [Pg.397]    [Pg.248]    [Pg.337]    [Pg.158]    [Pg.93]    [Pg.487]    [Pg.361]    [Pg.126]    [Pg.402]    [Pg.127]    [Pg.140]    [Pg.203]    [Pg.269]    [Pg.370]    [Pg.508]    [Pg.185]    [Pg.93]    [Pg.150]    [Pg.175]    [Pg.55]    [Pg.337]    [Pg.82]    [Pg.397]    [Pg.1]    [Pg.89]    [Pg.173]    [Pg.131]    [Pg.180]    [Pg.266]    [Pg.51]    [Pg.487]    [Pg.328]    [Pg.502]    [Pg.324]    [Pg.328]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Material features

© 2024 chempedia.info