Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complexes modeling

Slightly more complex models treat the water, the amphiphile and the oil as tliree distinct variables corresponding to the spin variables. S = +1, 0, and -1. The most general Hamiltonian with nearest-neighboiir interactions has the fomi... [Pg.2379]

An extension of these calculations to cationic dialkylamide salts required an even more complex model [Adolf et al. 1995]. These molecules have the general formula (CH3)2N [(CH2) iCH3][(CH2)m-iCH3]CK and the isomer with m = m = 18 is one of the main active ingredients in commercial fabric softeners. The presence of two long alkyl... [Pg.417]

In modem industrial practice, compositions often contain pigments, reinforcements, rheological modifiers, surfactants, and other materials in addition to fillers. These materials can function synergisticaHy in the system. Hence, more complex models are needed to predict the optimal filler loading. ExceUent discussions of filler loading and selection in plastics are given (9,10). [Pg.367]

D. A. D2ombak and P. M. M. Morel, Suface Complexation Modeling Hydrous Ferric Oxide, Wiley-Interscience, New York, 1990. [Pg.219]

Can the relationship be approximated by an equation involving linear terms for the quantitative independent variables and two-factor interaction terms only or is a more complex model, involving quadratic and perhaps even multifactor interaction terms, necessary As indicated, a more sophisticated statistical model may be required to describe relationships adequately over a relatively large experimental range than over a limited range. A linear relationship may thus be appropriate over a narrow range, but not over a wide one. The more complex the assumed model, the more mns are usually required to estimate model terms. [Pg.522]

AMPL. This framework is by Fourier and coworkers (Ref. 113) at Northwestern University. It is well suited for constructing complex models. [Pg.483]

Building and explaining a complex model requires a unified view caUed an ontology. Methods of quahtative reasoning can be based on different viewpoints the dominant viewpoints are device, process, and constraints. Behavior generation is handled with two approaches ... [Pg.509]

To conclude, although the models used in lattice simulations are very simplified, the results provide general information on possible protein folding scenarios, albeit not on the detailed behavior of specific proteins, which would require more complex models and more accurate potentials. The contribution made by these simulations is that they enable an analysis of the structures, energetics, and dynamics of folding reactions at a level of detail not accessible to experiment. [Pg.379]

Schulman, L. L., and Hanna, S. R., Evaluation of downwash modifications to the Industrial Source Complex model. ]. Air Pollut. Control Assoc. 36(3), 258-264 (1986). [Pg.343]

Various theoretical and empirical models have been derived expressing either charge density or charging current in terms of flow characteristics such as pipe diameter d (m) and flow velocity v (m/s). Liquid dielectric and physical properties appear in more complex models. The application of theoretical models is often limited by the nonavailability or inaccuracy of parameters needed to solve the equations. Empirical models are adequate in most cases. For turbulent flow of nonconductive liquid through a given pipe under conditions where the residence time is long compared with the relaxation time, it is found that the volumetric charge density Qy attains a steady-state value which is directly proportional to flow velocity... [Pg.107]

The example in Figure 3 is as complex as is usually possible to analyze. There are seven unknowns, if no indices of refracdon are being solved for in the regression analysis. If correlation is a problem, then a less complex model must be assumed. For example, the assumption that and are each fixed at a value of 0.5 might reduce correlation. The five remaining unknowns in the regression analysis would then be and 3. In practice one first assumes the simplest possible model,... [Pg.406]

The room models implemented in the codes can be distinguished further by how detailed the models of the energy exchange processes are. Simple models use a combined convective-radiative heat exchange. More complex models use separate paths for these effects. Mixed forms also exist. The different models can also be distinguished by how the problem is solved. The energy balance for the zone is calculated in each time step of the simulation. [Pg.1070]

We close these introductory remarks with a few comments on the methods which are actually used to study these models. They will for the most part be mentioned only very briefly. In the rest of this chapter, we shall focus mainly on computer simulations. Even those will not be explained in detail, for the simple reason that the models are too different and the simulation methods too many. Rather, we refer the reader to the available textbooks on simulation methods, e.g.. Ref. 32-35, and discuss only a few technical aspects here. In the case of atomistically realistic models, simulations are indeed the only possible way to approach these systems. Idealized microscopic models have usually been explored extensively by mean field methods. Even those can become quite involved for complex models, especially for chain models. One particularly popular and successful method to deal with chain molecules has been the self-consistent field theory. In a nutshell, it treats chains as random walks in a position-dependent chemical potential, which depends in turn on the conformational distributions of the chains in... [Pg.639]

Hiis result dearly marks die diflictdties and limdations inberent in die "modi-ded" Felfcin-Anb model, wbidi so far is nodiing more dian a rule of diumb. To account for diese results, a swddi in medianism towards a "rt-complex" model bas been proposed [36b, 37]. [Pg.198]

Because monitoring and data-logging facilities add to initial cost, some customers may be hesitant to choose between a simple configuration without those capabilities and a more complex model including them. The benefits associated with monitoring often outweigh the price premium, as they allow the user to ... [Pg.467]

Desulfurization of FCC feedstocks reduces the sulfur content of FCC products and SOX emissions. In the United States, road diesel sulfur can be 500 ppm (0.05 wt%). In some European countries, for example in Sweden, the sulfur of road diesel is 50 ppm or less. In California, the gasoline sulfur is required to be less than 40 ppm. The EPA s complex model uses sulfur as a controlling parameter to reduce toxic emissions. With hydroprocessed FCC feeds, about 5% of feed sulfur is in the FCC gasoline. For non-hydroprocessed feeds, the FCC gasoline sulfur is typically 10% of the feed sulfur. [Pg.81]

Starting January 1998, the EPA s Complex Model went into effect. The Complex Model provides a set of equations that predict VOC, NO, and toxic emissions, using eight gasoline properties. These properties are RVP, oxygen, aromatics, benzene, olefins, sulfur, E200. [Pg.313]

Complex Model Phase II Per Gallon Standards (After Year 2000)... [Pg.315]

The California Air Resources Board (CARB) set an averse sulfur specification of 40 ppm for 1996, with a maximum of 80 ppm. The CAAA s Complex Model also addresses sulfur issues in its set of equations. [Pg.316]

More complex models must carefully consider additional factors such as the receptor structure of helper T cells and allow for, what in reality, is a less than perfect lock and key match between antibody and antigen. For the latter case, Stauffer [staufF92] describes two schemes in which more than one type of antibody fits a given antigen and more than one type of antigen corresponds to a given antibody. [Pg.429]

A classic example of where definitive experimental data necessitated refinement and extension of a model of drug-receptor interaction involved the discovery of constitutive receptor activity in GPCR systems. The state of the art model before this finding was the ternary complex model for GPCRs, a model that cannot accommodate ligand-independent (constitutive) receptor activity. [Pg.41]

With the experimental observation of constitutive activity for GPCRs by Costa and Herz [2], a modification was needed. Subsequently, Samama and colleagues [3] presented the extended ternary complex model to fill the void. This chapter discusses relevant mathematical models and generally offers a linkage between empirical measures of activity and molecular mechanisms. [Pg.42]

These, such as the black box that was the receptor at the turn of the century, usually are simple input/output functions with no mechanistic description (i.e., the drug interacts with the receptor and a response ensues). Another type, termed the Parsimonious model, is also simple but has a greater number of estimatable parameters. These do not completely characterize the experimental situation completely but do offer insights into mechanism. Models can be more complex as well. For example, complex models with a large number of estimatable parameters can be used to simulate behavior under a variety of conditions (simulation models). Similarly, complex models for which the number of independently verifiable parameters is low (termed heuristic models) can still be used to describe complex behaviors not apparent by simple inspection of the system. [Pg.43]

The resulting modification is called the extended ternary complex model [3], which describes the spontaneous formation of active state receptor ([Ra]) from an inactive state receptor ([RJ) according to an allosteric constant (L = [Ra]/[RJ). The active state receptor can form a complex with G-protein ([G]) spontaneously to form RaG, or agonist activation can induce formation of a ternary complex ARaG ... [Pg.48]

The extended ternary complex model can take into account the phenomenon of constitutive receptor activity. In genetically engineered systems where receptors can be expressed in high density, Costa and Herz [2] noted that high levels of receptor expression uncovered the existence of a population of spontaneously active receptors and that these receptors produce an elevated basal response in the system. The relevant factor is the ratio of receptors and G-proteins (i.e., elevated levels of receptor cannot yield constitutive activity in the absence of adequate amounts of G-protein, and vice versa). Constitutive activity (due to the [RaG] species) in the absence of ligand ([A] = 0) is expressed as... [Pg.49]


See other pages where Complexes modeling is mentioned: [Pg.2700]    [Pg.255]    [Pg.440]    [Pg.552]    [Pg.35]    [Pg.787]    [Pg.2184]    [Pg.314]    [Pg.378]    [Pg.339]    [Pg.89]    [Pg.1040]    [Pg.1104]    [Pg.63]    [Pg.314]    [Pg.315]    [Pg.323]    [Pg.41]    [Pg.41]    [Pg.42]    [Pg.48]    [Pg.48]    [Pg.48]   
See also in sourсe #XX -- [ Pg.333 , Pg.355 ]




SEARCH



Complex model

Complexation modeling

Complexation models

Complexity models

Models complexation model

© 2024 chempedia.info