Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical common polymers

The use of flame retardants came about because of concern over the flammabiUty of synthetic polymers (plastics). A simple method of assessing the potential contribution of polymers to a fire is to examine the heats of combustion, which for common polymers vary by only about a factor of two (1). Heats of combustion correlate with the chemical nature of a polymer whether the polymer is synthetic or natural. Concern over flammabiUty should arise via a proper risk assessment which takes into account not only the flammabiUty of the material, but also the environment in which it is used. [Pg.465]

Heat stabilizers protect polymers from the chemical degrading effects of heat or uv irradiation. These additives include a wide variety of chemical substances, ranging from purely organic chemicals to metallic soaps to complex organometaUic compounds. By far the most common polymer requiring the use of heat stabilizers is poly(vinyl chloride) (PVC). However, copolymers of PVC, chlorinated poly(vinyl chloride) (CPVC), poly(vinyhdene chloride) (PVDC), and chlorinated polyethylene (CPE), also benefit from this technology. Without the use of heat stabilizers, PVC could not be the widely used polymer that it is, with worldwide production of nearly 16 million metric tons in 1991 alone (see Vinyl polymers). [Pg.544]

Chemical Grafting. Polymer chains which are soluble in the suspending Hquid may be grafted to the particle surface to provide steric stabilization. The most common technique is the reaction of an organic silyl chloride or an organic titanate with surface hydroxyl groups in a nonaqueous solvent. For typical interparticle potentials and a particle diameter of 10 p.m, steric stabilization can be provided by a soluble polymer layer having a thickness of - 10 nm. This can be provided by a polymer tail with a molar mass of 10 kg/mol (25) (see Dispersants). [Pg.547]

Post-Curing. Whenever production techniques or economics permit, it is recommended that compounds based on terpolymer grades be post-cured. Relatively short press cures can be continued with an oven cure in order to develop full physical properties and maximum resistance to compression set. Various combinations of time and temperature may be used, but a cycle of 4 h at 175°C is the most common. The post-cure increases modulus, gready improves compresson set performance, and stabilizes the initial stress/strain properties, as chemically the polymer goes from an amide formation to a more stable imide formation. Peroxide-cured dipolymer compounds need not be post-cured. [Pg.500]

Some corrosion-resistant materials for concentrated aqueous solutions and acids are given in Tables 4.10 and 4.11. The resistance of some common polymers to organic solvents is summarized in Table 4.12. The attack process is accelerated by an increase in temperature. The chemical resistance of a range of common plastics is summarized in Table 4.13. [Pg.55]

Polymer. The polymer determines the properties of the hot melt variations are possible in molar mass distribution and in the chemical composition (copolymers). The polymer is the main component and backbone of hot-melt adhesive blend it gives strength, cohesion and mechanical properties (filmability, flexibility). The most common polymers in the woodworking area are EVA and APAO. [Pg.1075]

A few of the many chemical linkages or groups that can be detected in polymer spectra, along with the approximate wavelengths at which they occur are shown in figure below. The infrared absorption bands of interest in common polymers are... [Pg.77]

Polypropylene (PP) is a hydrophobic and chemically inert polymer which needs to be activated in order to be functional as a support for NA immobilization. Typically, PP membranes are aminated by exposure to an ammonia plasma generated by radiofrequency plasma discharge. Once aminated, the PP membranes can be reacted with derivatized ONDs using common coupling methods [56-58]. [Pg.94]

The present book contains about 110 detailed polymer recipes. Yet, for quite a number of common polymers recipes are missing. The following Tables 2.2,2.3, 2.4, and 2.5 attempt to fill this gap. The information provided includes the name of the monomer, the formula of the basic unit of the polymer, and references for detailed recipes. Table 2.2 lists polymers prepared by chain growth polymerization, Tables 2.3 and 2.4 those prepared by step growth polymerization, and Table 2.5 contains polymers obtained by chemical modifications of (natural) macromolecules. [Pg.43]

These molecules have no absorption in the near UV, so they cannot act as internal filters. There is no evidence that they could act as quenchers of the excited impurity chromophores in common polymers, and it has been mentioned already that such quenching action would be, in any case, unlikely to be important in relatively rigid systems such as polymers. This remark does not apply to free radical scavengers, because a free radical has an unlimited lifetime since it can disappear only through a chemical reaction with another open-shell molecule. [Pg.201]

Handbook of Common Polymers, The Chemical Rubber Co. Cleveland OH, 1971. [Pg.142]

Poly(vinyl chloride), PVC, is today one of the top three most widely used thermoplastic materials. Chemically, this polymer is one of the least stable of the common polymers. The broad scope of its applications was made possible only through the development of proper technology for the processing of the polymer and the use of suitable stabilizers. [Pg.35]

Besides the general insulating properties of insulating materials, chemical and thermal stability is required and excellent film-forming properties and methods for patterning the insulating layer. Therefore, the most common polymers (e.g. polyethylene, polypropylene, polyvinylchloride etc.) have not yet been used as gate-dielectric layers. [Pg.138]

The most common molecules from which polymers are made are ethylene (chemical formula CH2=CH2) and its derivatives. The key to its polymerisation is the double bond, which opens to form bonds to other ethylenes and the end result is a chain of CH2 groups, -CH2-CH2-CH2-CH2-CH2- which can be millions of carbons long. This is polyethylene. Another common polymer is poly(vinyl chloride) which is made from vinyl chloride (chemical formula CH2=CHCl) and is better known as PVC. See also PPMA and HEMA. The following table lists various common polymers headed by those based on ethylene and its derivatives ... [Pg.214]

Figure 5.1. Molecular structures of the chemical repeat units for common polymers. Shown are (a) polyethylene (PE), (b) poly(vinyl chloride) (PVC), (c) polytetrafluoroethylene (PTFE), (d) polypropylene (PP), (e) polyisobutylene (PIB), (f) polybutadiene (PBD), (g) c/5-polyisoprene (natural rubber), (h) traw5-polychloroprene (Neoprene rubber), (i) polystyrene (PS), (j) poly(vinyl acetate) (PVAc), (k) poly(methyl methacrylate) (PMMA), ( ) polycaprolactam (polyamide - nylon 6), (m) nylon 6,6, (n) poly(ethylene teraphthalate), (o) poly(dimethyl siloxane) (PDMS). Figure 5.1. Molecular structures of the chemical repeat units for common polymers. Shown are (a) polyethylene (PE), (b) poly(vinyl chloride) (PVC), (c) polytetrafluoroethylene (PTFE), (d) polypropylene (PP), (e) polyisobutylene (PIB), (f) polybutadiene (PBD), (g) c/5-polyisoprene (natural rubber), (h) traw5-polychloroprene (Neoprene rubber), (i) polystyrene (PS), (j) poly(vinyl acetate) (PVAc), (k) poly(methyl methacrylate) (PMMA), ( ) polycaprolactam (polyamide - nylon 6), (m) nylon 6,6, (n) poly(ethylene teraphthalate), (o) poly(dimethyl siloxane) (PDMS).
Substances. Less common in drug discovery, but very useful for material science and polymer chemistry, is the ability to store "substances." These include unspecified or uncertain chemical structures, polymers, and other chemical entities that cannot be classed with the other chemical representations (42). Polymers pose particular problems, as discussed in the article by Schultz and Wilks (43). [Pg.368]


See other pages where Chemical common polymers is mentioned: [Pg.180]    [Pg.319]    [Pg.649]    [Pg.55]    [Pg.204]    [Pg.478]    [Pg.383]    [Pg.168]    [Pg.34]    [Pg.449]    [Pg.204]    [Pg.632]    [Pg.194]    [Pg.54]    [Pg.24]    [Pg.716]    [Pg.113]    [Pg.861]    [Pg.109]    [Pg.26]    [Pg.195]    [Pg.221]    [Pg.19]    [Pg.180]    [Pg.41]    [Pg.228]    [Pg.28]   
See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Common polymers

Polymer chemical

© 2024 chempedia.info