Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Combinations of viscoelastic

Attention is confined to isotropic materials. Also, we deal only with halfplane problems and rigid indentors. However, the results are applicable to mildly curved surfaces and, with certain modifications, to the case of contact between two viscoelastic bodies. This is the familiar argument used in the theory of Hertzian contact. The modifications mentioned are not trivial in the viscoelastic case, as they are in the elastic case, involving as they do, the combining of viscoelastic... [Pg.91]

Other combinations of upper- and lower-convected time derivatives of the stress tensor are also used to construct constitutive equations for viscoelastic fluids. For example, Johnson and Segalman (1977) have proposed the following equation... [Pg.12]

In this chapter we examine the elastic behavior of polymers. We shall see that this behavior is quite different from the elasticity displayed by metals and substances composed of small molecules. This is a direct consequence of the chain structure of the polymer molecules. In many polymers elasticity does not occur alone, but coupled with viscous phenomena. The combination of these effects is called viscoelasticity. We shall examine this behavior as well. [Pg.133]

The Maxwell and Voigt models of the last two sections have been investigated in all sorts of combinations. For our purposes, it is sufficient that they provide us with a way of thinking about relaxation and creep experiments. Probably one of the reasons that the various combinations of springs and dash-pots have been so popular as a way of representing viscoelastic phenomena is the fact that simple and direct comparison is possible between mechanical and electrical networks, as shown in Table 3.3. In this parallel, the compliance of a spring is equivalent to the capacitance of a condenser and the viscosity of a dashpot is equivalent to the resistance of a resistor. The analogy is complete... [Pg.172]

The elongation of a stretched fiber is best described as a combination of instantaneous extension and a time-dependent extension or creep. This viscoelastic behavior is common to many textile fibers, including acetate. Conversely, recovery of viscoelastic fibers is typically described as a combination of immediate elastic recovery, delayed recovery, and permanent set or secondary creep. The permanent set is the residual extension that is not recoverable. These three components of recovery for acetate are given in Table 1 (4). The elastic recovery of acetate fibers alone and in blends has also been reported (5). In textile processing strains of more than 10% are avoided in order to produce a fabric of acceptable dimensional or shape stabiUty. [Pg.292]

Gels are viscoelastic bodies that have intercoimected pores of submicrometric dimensions. A gel typically consists of at least two phases, a soHd network that entraps a Hquid phase. The term gel embraces numerous combinations of substances, which can be classified into the following categories (2) (/) weU-ordered lamellar stmctures (2) covalent polymeric networks that are completely disordered (2) polymer networks formed through physical aggregation that are predominantly disordered and (4) particular disordered stmctures. [Pg.248]

The energy release rate (G) represents adherence and is attributed to a multiplicative combination of interfacial and bulk effects. The interface contributions to the overall adherence are captured by the adhesion energy (Go), which is assumed to be rate-independent and equal to the thermodynamic work of adhesion (IVa)-Additional dissipation occurring within the elastomer is contained in the bulk viscoelastic loss function 0, which is dependent on the crack growth velocity (v) and on temperature (T). The function 0 is therefore substrate surface independent, but test geometry dependent. [Pg.693]

Many microbial polysaccharides show pseudoplastic flow, also known as shear thinning. When solutions of these polysaccharides are sheared, the molecules align in the shear field and the effective viscosity is reduced. This reduction of viscosity is not a consequence of degradation (unless the shear rate exceeds 105 s 1) since the viscosity recovers immediately when die shear rate is decreased. This combination of viscous and elastic behaviour, known as viscoelasticity, distinguishes microbial viscosifiers from solutions of other thickeners. Examples of microbial viscosifiers are ... [Pg.213]

The viscoelasticity is a combination of viscous and elastic properties in a plastic with... [Pg.39]

With plastics there are two types of deformation or flow viscous, in which the energy causing the deformation is dissipated, and elastic, in which that energy is stored. The combination produces viscoelastic plastics. See Chapter 2, MATERIAL BEHAVIOR, Rheology and Viscoelasticity, regarding their effects on fabricated products. [Pg.446]

Viscoelasticity A combination of viscous and elastic properties in a plastic with the relative contribution of each being dependent on time, temperature, stress, and strain rate. It relates to the mechanical behavior of plastics in which there is a time and temperature dependent relationship between stress and strain. A material having this property is considered to combine the features of a perfectly elastic solid and a perfect fluid. [Pg.645]

Because of the assumption that linear relations exist between shear stress and shear rate (equation 3.4) and between distortion and stress (equation 3.128), both of these models, namely the Maxwell and Voigt models, and all other such models involving combinations of springs and dashpots, are restricted to small strains and small strain rates. Accordingly, the equations describing these models are known as line viscoelastic equations. Several theoretical and semi-theoretical approaches are available to account for non-linear viscoelastic effects, and reference should be made to specialist works 14-16 for further details. [Pg.116]

The results from EQCM studies on conducting polymer films can be ambiguous because the measured mass change results from a combination of independent ion transport, coupled ion transport (i.e., salt transport), and solvent transport. In addition, changes in the viscoelasticity of the films can cause apparent mass changes. The latter problem can be minimized by checking the frequency response of the EQCM,174 while the various mass transport components can be separated by careful data analysis.175,176... [Pg.578]

Viscoelasticity illustrates materials that exhibit both viscous and elastic characteristics. Viscous materials tike honey resist shear flow and strain linearly with time when a stress is applied. Elastic materials strain instantaneously when stretched and just as quickly return to their original state once the stress is removed. Viscoelastic materials have elements of both of these properties and, as such, exhibit time-dependent strain. Viscoelasticity is the result of the diffusion of atoms or molecules inside an amorphous material. Rubber is highly elastic, but yet a viscous material. This property can be defined by the term viscoelasticity. Viscoelasticity is a combination of two separate mechanisms occurring at the same time in mbber. A spring represents the elastic portion, and a dashpot represents the viscous component (Figure 28.7). [Pg.783]

Figure 28.9 shows the total stress curve (a combination of the viscous and elastic), it is called viscoelastic curve. It is following, the elastic one, by a distance, equivalent to a certain number of degrees, known as delta, 8. [Pg.784]

In summary, the FT rheometry protocols described above and the associated data treatment yield a considerable number of information about the viscoelastic character of materials. Within less than 1 h, two samples are tested and the full data treatment is performed (using the present combination of VBA macros and MathCad routines). [Pg.830]

In the molten state polymers are viscoelastic that is they exhibit properties that are a combination of viscous and elastic components. The viscoelastic properties of molten polymers are non-Newtonian, i.e., their measured properties change as a function of the rate at which they are probed. (We discussed the non-Newtonian behavior of molten polymers in Chapter 6.) Thus, if we wait long enough, a lump of molten polyethylene will spread out under its own weight, i.e., it behaves as a viscous liquid under conditions of slow flow. However, if we take the same lump of molten polymer and throw it against a solid surface it will bounce, i.e., it behaves as an elastic solid under conditions of high speed deformation. As a molten polymer cools, the thermal agitation of its molecules decreases, which reduces its free volume. The net result is an increase in its viscosity, while the elastic component of its behavior becomes more prominent. At some temperature it ceases to behave primarily as a viscous liquid and takes on the properties of a rubbery amorphous solid. There is no well defined demarcation between a polymer in its molten and rubbery amorphous states. [Pg.134]

Here we describe the strain history with the Finger strain tensor C 1(t t ) as proposed by Lodge [55] in his rubber-like liquid theory. This equation was found to describe the stress in deforming polymer melts as long as the strains are small (second strain invariant below about 3 [56] ). The permanent contribution GcC 1 (r t0) has to be added for a linear viscoelastic solid only. C 1(t t0) is the strain between the stress free state t0 and the instantaneous state t. Other strain measures or a combination of strain tensors, as discussed in detail by Larson [57], might also be appropriate and will be considered in future studies. A combination of Finger C 1(t t ) and Cauchy C(t /. ) strain tensors is known to express the finite second normal stress difference in shear, for instance. [Pg.189]

For a Newtonian fluid, the shear stress is proportional to the shear rate, the constant of proportionality being the coefficient of viscosity. The viscosity is a property of the material and, at a given temperature and pressure, is constant. Non-Newtonian fluids exhibit departures from this type of behaviour. The relationship between the shear stress and the shear rate can be determined using a viscometer as described in Chapter 3. There are three main categories of departure from Newtonian behaviour behaviour that is independent of time but the fluid exhibits an apparent viscosity that varies as the shear rate is changed behaviour in which the apparent viscosity changes with time even if the shear rate is kept constant and a type of behaviour that is intermediate between purely liquid-like and purely solid-like. These are known as time-independent, time-dependent, and viscoelastic behaviour respectively. Many materials display a combination of these types of behaviour. [Pg.48]

The final main category of non-Newtonian behaviour is viscoelasticity. As the name implies, viscoelastic fluids exhibit a combination of ordinary liquid-like (viscous) and solid-like (elastic) behaviour. The most important viscoelastic fluids are molten polymers but other materials containing macromolecules or long flexible particles, such as fibre suspensions, are viscoelastic. An everyday example of purely viscous and viscoelastic behaviour can be seen with different types of soup. When a thin , watery soup is stirred in a bowl and the stirring then stopped, the soup continues to flow round the bowl and gradually comes to rest. This is an example of purely viscous behaviour. In contrast, with certain thick soups, on cessation of stirring the soup rapidly slows down and then recoils slightly. [Pg.53]

The simplest model that can show the most important aspects of viscoelastic behaviour is the Maxwell fluid. A mechanical model of the Maxwell fluid is a viscous element (a piston sliding in a cylinder of oil) in series with an elastic element (a spring). The total extension of this mechanical model is the sum of the extensions of the two elements and the rate of extension is the sum of the two rates of extension. It is assumed that the same form of combination can be applied to the shearing of the Maxwell fluid. [Pg.54]

As noted in Chapter 1, viscoelastic fluids exhibit a combination of solid-like and liquid-like behaviour. Even a simple analysis of viscoelastic effects in process plant is beyond the scope of this book. This section is restricted to an outline of practical implications of elastic effects and a demonstration of the fact that viscoelastic liquids exhibit stronger elastic behaviour as the deformation rate is increased. [Pg.131]

Both of these models show contributions from the viscosity and the elasticity, and so both these models show viscoelastic behaviour. You can visualise a more complex combination of models possessing more complex constitutive equations and thus able to describe more complex rheological profiles. [Pg.103]

We have developed the idea that we can describe linear viscoelastic materials by a sum of Maxwell models. These models are the most appropriate for describing the response of a body to an applied strain. The same ideas apply to a sum of Kelvin models, which are more appropriately applied to stress controlled experiments. A combination of these models enables us to predict the results of different experiments. If we were able to predict the form of the model from the chemical constituents of the system we could predict all the viscoelastic responses in shear. We know that when a strain is applied to a viscoelastic material the molecules and particles that form the system gradual diffuse to relax the applied strain. For example, consider a solution of polymer... [Pg.116]


See other pages where Combinations of viscoelastic is mentioned: [Pg.302]    [Pg.197]    [Pg.201]    [Pg.324]    [Pg.377]    [Pg.167]    [Pg.238]    [Pg.302]    [Pg.197]    [Pg.201]    [Pg.324]    [Pg.377]    [Pg.167]    [Pg.238]    [Pg.9]    [Pg.156]    [Pg.418]    [Pg.176]    [Pg.341]    [Pg.139]    [Pg.93]    [Pg.124]    [Pg.14]    [Pg.138]    [Pg.120]    [Pg.116]    [Pg.55]    [Pg.223]    [Pg.238]    [Pg.101]    [Pg.102]    [Pg.113]   


SEARCH



© 2024 chempedia.info