Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Secondary creep

The elongation of a stretched fiber is best described as a combination of instantaneous extension and a time-dependent extension or creep. This viscoelastic behavior is common to many textile fibers, including acetate. Conversely, recovery of viscoelastic fibers is typically described as a combination of immediate elastic recovery, delayed recovery, and permanent set or secondary creep. The permanent set is the residual extension that is not recoverable. These three components of recovery for acetate are given in Table 1 (4). The elastic recovery of acetate fibers alone and in blends has also been reported (5). In textile processing strains of more than 10% are avoided in order to produce a fabric of acceptable dimensional or shape stabiUty. [Pg.292]

Cold-roUed alloys of lead with 0.06 wt % teUurium often attain ultimate tensile strengths of 25—30 MPa (3625—5350 psi). High mechanical strength, excellent creep resistance, and low levels of alloying elements have made lead—teUurium aUoys the primary material for nuclear shielding for smaU reactors such as those aboard submarines. The aUoy is self-supporting and does not generate secondary radiation. [Pg.61]

When a fiber is stressed, the instantaneous elongation that occurs is defined as instantaneous elastic deformation. The subsequent delayed additional elongation that occurs with increasing time is creep deformation. Upon stress removal, the instantaneous recovery that occurs is called instantaneous elastic recovery and is approximately equal to the instantaneous elastic deformation. If the subsequent creep recovery is 100%, ie, equal to the creep deformation, the specimen exhibits primary creep only and is thus completely elastic. In such a case, the specimen has probably not been extended beyond its yield point. If after loading and load removal, the specimen fails to recover to its original length, the portion of creep deformation that is recoverable is still called primary creep the portion that is nonrecoverable is called secondary creep. This nonrecoverable elongation is typically called permanent set. [Pg.455]

It is generally accepted that, all other things being equal, the lower the secondary creep, the better the fiber is in terms of wear, shape retention, and crease resistance. This does not mean that glass, which has no secondary creep, is better in abrasion resistance than high tenacity viscose rayon, which has secondary creep, because the respective energy absorption capacities of these two materials, exclusive of secondary creep, are not equal. Nor does it mean that fibers that exhibit secondary creep are of no value. For fabrics to meet the requirements of wear, crease resistance, and shape retention, the load and extension yield points should not be exceeded during use. [Pg.455]

Fig. 5. Tensile elongation vs time demonstrating creep behavior of ceramics. Section I is primary creep II, secondary or steady-state creep III, tertiary... Fig. 5. Tensile elongation vs time demonstrating creep behavior of ceramics. Section I is primary creep II, secondary or steady-state creep III, tertiary...
Although the initial elastic and the primary creep strain cannot be neglected, they occur quickly, and they can be treated in much the way that elastic deflection is allowed for in a structure. But thereafter, the material enters steady-state, or secondary creep, and the strain increases steadily with time. In designing against creep, it is usually this steady accumulation of strain with time that concerns us most. [Pg.173]

Graphite will creep imder neutron irradiation and stress at temperatures where thermal creep is normally negligible. The phenomenon of irradiation creep has been widely studied because of its significance to the operation of graphite moderated fission reactors. Indeed, if irradiation induced stresses in graphite moderators could not relax via radiation creep, rapid core disintegration would result. The observed creep strain has traditionally been separated into a primary reversible component ( ,) and a secondary irreversible component (Ej), both proportional to stress and to the appropriate unirradiated elastic compliance (inverse modulus) [69]. The total irradiation-induced creep strain (ej is thus ... [Pg.468]

Resistance to common aircraft fluids such as water, salt water, hydraulic fluid and jet fuel is determined by additional shear testing after exposure to these fluids. Since adhesives are typically only exposed at bond edges, are protected by secondary primers and enamels and are not expected to be exposed to these fluids (save for water) for extended periods, exposure time prior to testing is relatively short. Lastly, the adhesive is tested for propensity to creep rupture under load in standard and aggressive environments. This testing indicates whether the polymer is crosslinked sufficiently to resist long-term creep under low load. [Pg.1147]

Many plastic products seen in everyday life are not required to undergo sophisticated design analysis because they are not required to withstand extreme loading conditions such as creep and fatigue loads. Examples include containers cups toys boxes housings for computers, radios, televisions and the like and nonstructural or secondary structural products of various kinds in buildings, aircraft, appliances, and electronic devices. These type products require reviewing... [Pg.37]

Many materials of practical interest (such as polymer solutions and melts, foodstuffs, and biological fluids) exhibit viscoelastic characteristics they have some ability to store and recover shear energy and therefore show some of the properties of both a solid and a liquid. Thus a solid may be subject to creep and a fluid may exhibit elastic properties. Several phenomena ascribed to fluid elasticity including die swell, rod climbing (Weissenberg effect), the tubeless siphon, bouncing of a sphere, and the development of secondary flow patterns at low Reynolds numbers, have recently been illustrated in an excellent photographic study(18). Two common and easily observable examples of viscoelastic behaviour in a liquid are ... [Pg.115]

As shown in Sect. 2, the fracture envelope of polymer fibres can be explained not only by assuming a critical shear stress as a failure criterion, but also by a critical shear strain. In this section, a simple model for the creep failure is presented that is based on the logarithmic creep curve and on a critical shear strain as the failure criterion. In order to investigate the temperature dependence of the strength, a kinetic model for the formation and rupture of secondary bonds during the extension of the fibre is proposed. This so-called Eyring reduced time (ERT) model yields a relationship between the strength and the load rate as well as an improved lifetime equation. [Pg.81]

Dislocations are known to be responsible for the short-term plastic (nonelastic) properties of substances, which represents departure from the elastic behaviour described by Hooke s law. Their concentration determines, in part, not only this immediate transport of planes of atoms through the solid at moderate temperatures, but also plays a decisive role in the behaviour of metals under long-term stress. In processes which occur slowly over a long period of time such as secondary creep, the dislocation distribution cannot be considered geometrically fixed within a solid because of the applied stress. [Pg.180]


See other pages where Secondary creep is mentioned: [Pg.328]    [Pg.183]    [Pg.328]    [Pg.183]    [Pg.271]    [Pg.86]    [Pg.111]    [Pg.111]    [Pg.111]    [Pg.114]    [Pg.114]    [Pg.56]    [Pg.150]    [Pg.50]    [Pg.455]    [Pg.460]    [Pg.198]    [Pg.402]    [Pg.322]    [Pg.220]    [Pg.226]    [Pg.468]    [Pg.30]    [Pg.962]    [Pg.1081]    [Pg.1]    [Pg.106]    [Pg.293]    [Pg.26]    [Pg.59]    [Pg.89]    [Pg.108]    [Pg.113]    [Pg.56]    [Pg.42]    [Pg.80]    [Pg.489]    [Pg.825]    [Pg.122]    [Pg.122]   
See also in sourсe #XX -- [ Pg.432 , Pg.455 ]

See also in sourсe #XX -- [ Pg.401 , Pg.402 ]

See also in sourсe #XX -- [ Pg.4 , Pg.193 ]

See also in sourсe #XX -- [ Pg.383 , Pg.388 , Pg.392 ]




SEARCH



© 2024 chempedia.info