Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Column electrophoretic

Electrophoretic condition 60 cm (effective length of 50 cm)x75 p.m I.D. fused capillary column, run buffer borate buffer pH 9,0, P-cyclodextrin, electrophoresis voltage 20 kV, detection at 254 nm. [Pg.114]

Lipoproteins (from human plasma). Individual human plasma lipid peaks were removed from plasma by ultracentrifugation, then separated and purified by agarose-column chromatography. Fractions were characterised immunologically, chemically, electrophoretically and by electron microscopy. [Rudel et al. Biochem J 13 89 1974.]... [Pg.546]

The flow profiles of electrodriven and pressure driven separations are illustrated in Figure 9.2. Electroosmotic flow, since it originates near the capillary walls, is characterized by a flat flow profile. A laminar profile is observed in pressure-driven systems. In pressure-driven flow systems, the highest velocities are reached in the center of the flow channels, while the lowest velocities are attained near the column walls. Since a zone of analyte-distributing events across the flow conduit has different velocities across a laminar profile, band broadening results as the analyte zone is transferred through the conduit. The flat electroosmotic flow profile created in electrodriven separations is a principal advantage of capillary electrophoretic techniques and results in extremely efficient separations. [Pg.199]

Figure 9.3 Schematic illustration of the electrophoretic transfer of proteins in the chromatophoresis process. After being eluted from the HPLC column, the proteins were reduced with /3-mercaptoethanol in the protein reaction system (PRS), and then deposited onto the polyacrylamide gradient gel. (PRC, protein reaction cocktail). Reprinted from Journal of Chromatography, 443, W. G. Button et al., Separation of proteins by reversed-phase Mgh-performance liquid cliromatography , pp 363-379, copyright 1988, with permission from Elsevier Science. Figure 9.3 Schematic illustration of the electrophoretic transfer of proteins in the chromatophoresis process. After being eluted from the HPLC column, the proteins were reduced with /3-mercaptoethanol in the protein reaction system (PRS), and then deposited onto the polyacrylamide gradient gel. (PRC, protein reaction cocktail). Reprinted from Journal of Chromatography, 443, W. G. Button et al., Separation of proteins by reversed-phase Mgh-performance liquid cliromatography , pp 363-379, copyright 1988, with permission from Elsevier Science.
FIGURE 3-24 Electrophoretic separation of catechols with end-column detection. Detection potential, +0.8 V separation capillary, 20 kV The peaks correspond to 4.6 fmol dopamine (1), 4.1 fmol isoproterenol (2), and 2.7 fmol catechol (3). (Reproduced with permission from reference 60.)... [Pg.90]

Att eZcven y-cJuiin voA nts, discovered thus far, exhibit a change In electrophoretic mobility, and starch gel electrophoresis Is the recommended method for their detection. Quantitation of the variant can best be done by chromatography on columns of either DEAE-Sephadex or CM-Cellulose. The quantities of some variants In heterozygotes differ greatly. For Instance, the relative amount (expressed In %F /Fxotal) varies from 20-25% (F-Malta-I) to 10-15% (most Y C >aln variants) to 5-6%... [Pg.14]

An exeuaple of a nodular apparatus for capillary electrophoretic separation methods, is shown in Figure 4.43 [637-639,681-684]. It Offers a choice of automated sample introduction methods with on-column detection and has a... [Pg.265]

Capillary electrophoretic separations are performed in small diameter tubes, made of Teflon, polyethylene, and other materials. The most frequently used material is fused silica. Fused silica capillaries are relatively inexpensive and are available in different internal and external diameters. An important advantage of a fused silica capillary is that the inner surface can be modified easily by either chemical or physical means. The chemistry of the silica surface is well established due to the popularity of silica surfaces in gas chromatography (GC) and liquid chromatography (LC). In capillary electrophoresis, the silica surface is responsible for the EOF. Using surface modification techniques, the zeta potential and correspondingly the EOF can be varied or eliminated. Column fabrication has been done on microchips.13... [Pg.392]

In the previously described electrophoretic methods, the capillary was filled with electrolytes only. Another mode of operation in capillary electrophoresis involves filling the capillary with gel or viscous polymer solutions. If desired, a column can be packed with particles and equipped with a frit.68 This mode of analysis has been favorably used for the size determination of biologically important polymers, such as DNA, proteins, and polysaccharides. The most frequently used polymers in capillary gel electrophoresis are cross-linked or linear polyacrylamide,69 cellulose derivatives,70-75 agarose,76 78 and polyethylene glycols. [Pg.400]

Rush, R. S., Cohen, A. S., and Karger, B. L., Influence of column temperature on the electrophoretic behavior of myoglobin and a-lactalbumin in high-performance capillary electrophoresis, Anal. Chem., 63, 1346, 1991. [Pg.419]

A number of developments have increased the importance of capillary electrophoretic methods relative to pumped column methods in analysis. Interactions of analytes with the capillary wall are better understood, inspiring the development of means to minimize wall effects. Capillary electrophoresis (CE) has been standardized to the point of being useful as a routine technique. Incremental improvements in column coating techniques, buffer preparation, and injection techniques, combined with substantive advances in miniaturization and detection have potentiated rugged operation and high capacity massive parallelism in analysis. [Pg.427]

Miniaturized columns have provided a decisive advantage in speed. Uracil, phenol, and benzyl alcohol were separated in 20 seconds by CEC in an 18 mm column with a propyl reversed phase.29 A19 cm electrophoretic channel was etched into a glass wafer, filled with a y-cyclodextrin buffer, and used to resolve chiral amino acids from a meteorite in 4 minutes.30 A 6 cm channel equipped with a syringe pump to automate sample derivatization was used to separate amino acids modified with fluorescein isothiocyanate.31 Nanovials have been used to perform tryptic digests on the 15 nL scale for subsequent separation on capillary Electrophoresis.32 A microcolumn has also been used to generate fractions representing time-points of digestion from a 40 pL sample.33 A disposable nanoelectrospray emitter has been... [Pg.429]


See other pages where Column electrophoretic is mentioned: [Pg.330]    [Pg.244]    [Pg.68]    [Pg.330]    [Pg.244]    [Pg.68]    [Pg.547]    [Pg.609]    [Pg.609]    [Pg.209]    [Pg.504]    [Pg.299]    [Pg.198]    [Pg.202]    [Pg.288]    [Pg.292]    [Pg.198]    [Pg.291]    [Pg.295]    [Pg.263]    [Pg.263]    [Pg.265]    [Pg.266]    [Pg.266]    [Pg.779]    [Pg.779]    [Pg.93]    [Pg.134]    [Pg.143]    [Pg.247]    [Pg.289]    [Pg.333]    [Pg.377]    [Pg.386]    [Pg.393]    [Pg.403]    [Pg.427]    [Pg.429]    [Pg.432]   
See also in sourсe #XX -- [ Pg.169 ]




SEARCH



© 2024 chempedia.info