Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Colloids and Colloidal Stability

In Chapter 1 the importance of the various classes of colloidal systems to modern science and technology was indicated in a general way. Because of the wide variety of colloidal systems one encounters, each having certain unique features that distinguish it from the others, it is convenient to discuss each major classification separately. For that reason, chapters have been devoted to specific systems such as solid dispersions, aerosols, emulsions, foams, lyophilic colloids (i.e., polymer solutions), and association colloids. There is a great deal of overlap in many aspects of the formation, stabilization, and destruction of those systems, and an effort will be made not to repeat more than is necessary. However, for purposes of clarity, some repetition is unavoidable. [Pg.214]

The following discussion, while being general in nature, is intended to apply primarily to classic colloidal systems—dispersions of small solid particles in a liquid medium (also commonly referred to as sols ). A minimum of information that gives a general conceptual understanding of the phenomena is presented below. It is intended to serve as a useful lead into more detailed information as needed. [Pg.214]


Although the impact of this molecular-level effect is quite small (negligible in most cases), it can, under some circumstances, produce an appreciable energetic effect—repulsive in the case of two approaching surfaces—that is, it will be difficult to displace the last molecular layers separating the surfaces—or attractive in the separation of two contacting (adhesive) surfaces. These topics will appear again in Chapters 10 (on colloids and colloidal stability), 15 on association colloids micelles, vesicles and membranes), and 19 on adhesion). [Pg.74]

A number of refinements and applications are in the literature. Corrections may be made for discreteness of charge [36] or the excluded volume of the hydrated ions [19, 37]. The effects of surface roughness on the electrical double layer have been treated by several groups [38-41] by means of perturbative expansions and numerical analysis. Several geometries have been treated, including two eccentric spheres such as found in encapsulated proteins or drugs [42], and biconcave disks with elastic membranes to model red blood cells [43]. The double-layer repulsion between two spheres has been a topic of much attention due to its importance in colloidal stability. A new numeri-... [Pg.181]

Two nucleation processes important to many people (including some surface scientists ) occur in the formation of gallstones in human bile and kidney stones in urine. Cholesterol crystallization in bile causes the formation of gallstones. Cryotransmission microscopy (Chapter VIII) studies of human bile reveal vesicles, micelles, and potential early crystallites indicating that the cholesterol crystallization in bile is not cooperative and the true nucleation time may be much shorter than that found by standard clinical analysis by light microscopy [75]. Kidney stones often form from crystals of calcium oxalates in urine. Inhibitors can prevent nucleation and influence the solid phase and intercrystallite interactions [76, 77]. Citrate, for example, is an important physiological inhibitor to the formation of calcium renal stones. Electrokinetic studies (see Section V-6) have shown the effect of various inhibitors on the surface potential and colloidal stability of micrometer-sized dispersions of calcium oxalate crystals formed in synthetic urine [78, 79]. [Pg.338]

The remainder of this contribution is organized as follows. In section C2.6.2, some well studied colloidal model systems are introduced. Methods for characterizing colloidal suspensions are presented in section C2.6.3. An essential starting point for understanding the behaviour of colloids is a description of the interactions between particles. Various factors contributing to these are discussed in section C2.6.4. Following on from this, theories of colloid stability and of the kinetics of aggregation are presented in section C2.6.5. Finally, section C2.6.6 is devoted to the phase behaviour of concentrated suspensions. [Pg.2668]

Altliough tire tlieories of colloid stability and aggregation kinetics were developed several decades ago, tire actual stmcture of aggregates has only been studied more recently. To describe tire stmcture, we start witli tire relationship between tire size of an aggregate (linear dimension), expressed as its radius of gyration and its mass m ... [Pg.2684]

Hidalgo-Alvarez R, Martin A, Fernandez A, Bastes D, Martinez F and de las Nieves F J 1996 Electro kinetic properties, colloidal stability and aggregation kinetics of polymer colloids Adv. Colloid Interface Sc/. 67 1-118... [Pg.2692]

Bonnemann H ef a/1996 Nanoscale colloidal metals and alloys stabilized by solvents and surfactants preparation and use as catalyst precursors J. Organometaii. Chem. 520 143... [Pg.2917]

Table 4. Representative Solution and Surface Equilibria Influencing Colloidal Stability... Table 4. Representative Solution and Surface Equilibria Influencing Colloidal Stability...
Colloidal Stabilization. Surfactant adsorption reduces soil—substrate interactions and faciUtates soil removal. For a better understanding of these interactions, a consideration of coUoidal forces is required. [Pg.532]

The preemulsified carriers contain water. These products usually require homogenization through colloidal mills or similar equipment to reduce the particle size and ultimately stabilize the product. The preemulsified as well as the clear self-emulsifying products require the use of a solvent when the carrier-active material is a soHd. [Pg.266]

At the pH = Jt there is a balance of charge and there is no migration in an electric field. This is referred to as the isoelectric point and is determined by the relative dissociation constants of the acidic and basic side groups and does not necessarily correspond to neutrality on the pH scale. The isoelectric point for casein is about pH = 4.6 and at this point colloidal stability is at a minimum. This fact is utilised in the acid coagulation techniques for separating casein from skimmed milk. [Pg.855]

Neoprene latex 115 contains a copolymer of chloroprene and methacrylic acid, stabilized with polyvinyl alcohol [15], With respect to other polychloroprene latices, this latex has two major advantages (1) excellent colloidal stability, which gives high resistance to shear and a broad tolerance to several materials ... [Pg.595]

Surfactants. These enhance the colloid stability against mechanical and chemical stresses, help to disperse fillers, aid in wetting and enhance foaming. The most common surfactants are dodecylbenzene sulphonates and potassium oleate. [Pg.655]

Wetting agents. These facilitate the wetting of surfaces and aid colloidal stability without foaming. Naphthalene sulphonate/formaldehyde is the most common wetting agent. [Pg.655]

Petliica, B.A., 1986. A development chemists guide to colloidal stability. Colloids and Surfaces, 20, 151-170. [Pg.318]

Based on the application of the established theory of colloid stability of water treatment particles [8,85-88], the colloidal particles in untreated water are attached to one another by van der waals forces and, therefore, always tend to aggregate unless kept apart by electrostatic repulsion forces arising from the presence of electrical charges on the particles. The aggregation process... [Pg.127]

The particles therefore lose their charge. Since the charge provides the colloidal stability, the colloidal paint destabilises and deposits on the nearest surface, the car body. Primer coatings 12-35 /im thick are applied according to primer type. Each particle also contains a crosslinker for the resin, usually a blocked isocyanate. After rinsing, the primed article is passed into a hot... [Pg.626]

The early attempts at NMP of S in emulsion used TEMPO and related nitroxides and needed to be carried out at high temperatures (100-130 °C) necessitating a pressure reactor. Problems with colloidal stability and molecular weight control and limiting conversions were reported.215 217... [Pg.482]

Consequently, when selecting and blending the various raw materials used in all-polymer/all-organic formulations, the questions of thermal and hydrolytic stability and ability to transport or otherwise control colloidal iron oxides (in addition to possible adverse effects such as copper corrosion) become increasingly important at higher boiler temperatures and pressures. [Pg.457]

The surface force apparatus (SFA) is a device that detects the variations of normal and tangential forces resulting from the molecule interactions, as a function of normal distance between two curved surfaces in relative motion. SFA has been successfully used over the past years for investigating various surface phenomena, such as adhesion, rheology of confined liquid and polymers, colloid stability, and boundary friction. The first SFA was invented in 1969 by Tabor and Winterton [23] and was further developed in 1972 by Israela-chivili and Tabor [24]. The device was employed for direct measurement of the van der Waals forces in the air or vacuum between molecularly smooth mica surfaces in the distance range of 1.5-130 nm. The results confirmed the prediction of the Lifshitz theory on van der Waals interactions down to the separations as small as 1.5 nm. [Pg.14]

First though, we must outline albeit very briefly, the basic factors important to colloidal stability and self-assembly. It is these areas that clearly hold the insights we require. Throughout the section, we highlight possible control mechanisms available to the natural system. [Pg.101]


See other pages where Colloids and Colloidal Stability is mentioned: [Pg.214]    [Pg.216]    [Pg.218]    [Pg.220]    [Pg.222]    [Pg.224]    [Pg.226]    [Pg.228]    [Pg.230]    [Pg.232]    [Pg.234]    [Pg.236]    [Pg.238]    [Pg.240]    [Pg.242]    [Pg.244]    [Pg.246]    [Pg.248]    [Pg.250]    [Pg.252]    [Pg.185]    [Pg.189]    [Pg.398]    [Pg.403]    [Pg.1710]    [Pg.2681]    [Pg.36]    [Pg.396]    [Pg.397]    [Pg.439]    [Pg.68]    [Pg.31]    [Pg.33]    [Pg.35]    [Pg.82]    [Pg.177]    [Pg.374]    [Pg.241]    [Pg.129]    [Pg.2]    [Pg.442]    [Pg.443]    [Pg.446]    [Pg.448]    [Pg.452]    [Pg.128]    [Pg.286]   


SEARCH



Clay Swelling and Colloid Stability

Colloid stability

Colloid stability, stabilization

Colloid stabilizers

Colloidal Stability and Mesoglobules

Colloidal stabilization

Colloidal stabilizers

Colloidal stabilizing

Electrostatic and Polymer-Induced Colloid Stability

Interaction Energy and Colloid Stability

Interactions and Colloid Stability

Polymer adsorption and colloid stability

Potential, Surface Charge, and Colloidal Stability

Steric and charge-stabilized colloids

Surface Chemistry and Colloid Stability

Surface Chemistry and Colloidal Stability

Surface charge density and their colloidal stability

The Electrical Double Layer and Colloid Stability

© 2024 chempedia.info