Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coke formation zeolites

Rollmann and Walsh (266) have recently shown that for a wide variety of zeolites there is a good correlation between shape-selective behavior, as measured by the relative rates of conversion of n-hexane and 3-methyl-pentane, and the rate of coke formation (see Fig. 24). This correlation was considered to provide good evidence that intracrystalline coking is itself a shape-selective reaction. Thus, the rather constrained ZSM-5 pore structure exhibits high shape selectivity, probably via a restricted transition-state mechanism (242b), and therefore has a low rate of coke formation. Zeolite composition and crystal size, although influencing coke formation, were found to be of secondary importance. This type of information is clearly... [Pg.63]

As a nother means to decrease coke formation, zeolites with larger pore sizes have been studied. It is proposed that increased pore sizes allow larger molecules to reach the catalytic, acidic sites and possibly reduce coke formation. A recent patent uses an Ni-Mo catalyst supported on large pore zeolites (H-Beta, H-Y, H-mordenite) to... [Pg.207]

Zeolite-Based All lation. Zeohtes have the obvious advantages of being noncorrosive and environmentally benign. They have been extensively researched as catalysts for ethylbenzene synthesis. Eadier efforts were unsuccessful because the catalysts did not have sufficient selectivity and activity and were susceptible to rapid coke formation and deactivation. [Pg.478]

Deactivation of zeolite catalysts occurs due to coke formation and to poisoning by heavy metals. In general, there are two types of catalyst deactivation that occur in a FCC system, reversible and irreversible. Reversible deactivation occurs due to coke deposition. This is reversed by burning coke in the regenerator. Irreversible deactivation results as a combination of four separate but interrelated mechanisms zeolite dealu-mination, zeolite decomposition, matrix surface collapse, and contamination by metals such as vanadium and sodium. [Pg.72]

However, for the heavier resides, zeolite pore structure may preclude their use in HCK. We have introduce the effect of the pore size and distribution on the conversion and coke formation of asphaltene containing feeds (Section 5.2.1), but we should also point out that they also affect the dispersion of the hydrogenation metals on the catalyst surface. A poor dispersion will also lead to poor hydrogenation and indirectly favor coke formation. [Pg.54]

Even if 5A zeolite is widely used in iso-paraffin separation from an n/iso paraffin mixture, the adsorbent is affected by a slow deactivation mainly due to coke formation inside the molecular sieve porosity. Its aging phenomenon decreases its sorption properties. According to previous studies, 5A zeolite deactivation results essentially from heavy carbonaceous compound formation in a-cages blocking the 5A zeolite microporosity [1-2]. [Pg.105]

Propylene cokage experiments followed by gravimetry have shown that higher is the 5A zeolite calcium content, higher are the cokage kinetics and carbon content inside the pores (Fig. 1). The total carbon contents retained in the porosity after desorption at 350°C of physisorbed propylene are 14.5% and 11% for 5A 86 and 5A 67 samples respectively. These carbon contents are relatively important and probably come from the formation of heavy carbonaceous molecules (coke) as it has been observed by several authors [1-2], The coke formation requires acid protonic sites which seems to be present in both samples but in more important quantity for the highly Ca-exchanged one (5A 86). [Pg.106]

In recent years, there has been a growing interest in the synthesis and application of nano-scale zeolites. Zeolites with a crystal size smaller than 100 nm are the potential replacement for existing zeolite catalysts and can be used in novel environmentally benign catalytic processes. It is well known that the crystal size of zeolites has a great effect on their catalytic properties. The improved catalytic activity and selectivity as well as lower coke formation and better durability can be obtained over nano-sized zeolite crystals [2]. [Pg.373]

Only scant information is available about the influence of coke formation on the alkylation mechanism. It has been proposed that, similar to the conjunct polymers in liquid acids, heavy unsaturated molecules participate in hydride transfer reactions. However, no direct evidence was given for this proposition (69). In another study, the hydride transfer from unsaturated cyclic hydrocarbons was deduced from an initiation period in the activity of NaHY zeolites complete conversion of butene was achieved only after sufficient formation of such compounds (73). [Pg.267]

In a series of investigations of the cracking of alkanes and alkenes on Y zeolites (74,75), the effect of coke formation on the conversion was examined. The coke that formed was found to exhibit considerable hydride transfer activity. For some time, this activity can compensate for the deactivating effect of the coke. On the basis of dimerization and cracking experiments with labeled 1-butene on zeolite Y (76), it is known that substantial amounts of alkanes are formed, which are saturated by hydride transfer from surface polymers. In both liquid and solid acid catalysts, hydride transfer from isoalkanes larger than... [Pg.267]

Zeolite Y, 2 345t, 5 238-239, 11 678, 679 coke formation on, 5 270 for liquid separation adsorption, 1 674 manufacture, 2 359 structure, 1 675 Zeolite ZSM-5, 11 678 Zeolitic cracking catalysts, 16 835 Zeolitic deposits, 16 813 Zeonex, 10 180 Zeotypes... [Pg.1033]

Deoxygenation reactions are catalyzed by acids and the most studied are solid acids such as zeolites and days. Atutxa et al. [61] used a conical spouted bed reactor containing HZSM-5 and Lapas et al. [62] used ZSM-5 and USY zeolites in a circulating fluid bed to study catalytic pyrolysis (400-500 °C). They both observed excessive coke formation on the catalyst, and, compared with non-catalytic pyrolysis, a substantial increase in gaseous products (mainly C02 and CO) and water and a corresponding decrease in the organic liquid and char yield. The obtained liquid product was less corrosive and more stable than pyrolysis oil. [Pg.135]

Deoxygenation by full decarboxylation is the best route to make fuel precursors from bio-oil, because paraffin is produced and expensive hydrogen is not required. Decarboxylation of bio-oil has been tried over zeolites, yielding an aromatic product with a too low yield and excessive coke formation (Section 6.9.3). Selective decarboxylation of organic acids makes the bio-oil less acidic and corrosive. If acids can be removed selectively as CO2, it would also improve the energy... [Pg.136]

Full catalyst formulations consist of zeolite, metal and a binder, which provides a matrix to contain the metal and zeolite, as well as allowing the composite to be shaped and have strength for handling. The catalyst particle shape, size and porosity can impact the diffusion properties. These can be important in facile reactions such as xylene isomerization, where diffusion of reactants and products may become rate-limiting. The binder properties and chemistry are also key features, as the binder may supply sites for metal clusters and affect coke formation during the process. The binders often used for these catalysts include alumina, silica and mixtures of other refractory oxides. [Pg.495]

Coke formation during xylene isomerization has been studied using in situ infrared spectroscopy [78]. A study done on EB isomerization with a bifunctional catalyst containing EUO zeolite indicated that poor initial selectivity of the catalyst improves after a period of fast deactivation, during which micropores are blocked [79]. [Pg.495]

The amount of coke decreased drastically above 0.25M. Since U.D. is closely related to the amount of framework aluminum, the good correlation between the amount of coke and U.D. suggests that coke forms on Br nsted acid sites in zeolite. The removal of framework aluminum corresponding to BrjJnsted acid may be effective for decreasing coke formation. Furthermore, this result also indicates that the active iron cluster is inactive for coke formation in spite of high activity for toluene disproportionation. [Pg.161]

This type of coke formation occurs in the reaction zone and leads to coverage of the zeolite crystallites and closure of the pore entrances. [Pg.288]

Recently, UV laser stimulation of catalyst samples has been developed to overcome the problem of interference by coke (carbon deposition) on catalysts.Fig. 9 shows a typical Raman data set that was obtained for carbon deposition as a function of temperature. To explore different coke formation behavior, the reaction of propene on a zeolite was performed. The spectra obtained were (A) C3H6/He flow at 773 K for 3 h (B) O2 flow at 773 K for 1 h and (C) O2 flow at 873 K for 1 h. This data shows that most of the carbon, identified as polyaromatic and pregraphite, can be removed at 773 K with oxygen. However there is still carbon present as identified by the broad band at 1610 cm suggesting that carbon is in a more inert form such as coke. Not until the temperate is taken to 873 K with oxygen is that carbon removed. [Pg.202]

A maximum phenol conversion of 65% was reached, due to the fact that the consumption of benzoic acid was higher than that of phenol. Indeed, despite the 1/1 load ratio, the selectivity to those products the formation of which required two moles of benzoic acid per mole of phenol, made the conversion of benzoic acid approach the total one more quickly than phenol. A non-negligible effect of catalyst deactivation was present in fact, when the catalyst was separated from the reaction mixture by filtration, and was then re-loaded without any regeneration treatment, together with fresh reactants, a conversion of 52% was obtained after 2.5 h reaction time, lower than that one obtained with the fresh catalyst, i.e., 59% (Figure 1). The extraction, by means of CH2CI2, of those compounds that remained trapped inside the zeolite pores, evidenced that the latter were mainly constituted of phenol, benzoic acid and of reaction products, with very low amount of heavier compounds, possible precursors of coke formation. [Pg.84]

The effect of rare-earth HY zeolites is somewhat similar, except that it produces less olefin as a result of enhanced hydrogen transfer reactions. Decreased hydrogen transfer is the main feature of USY zeolites, yielding a product significantly richer in olefins. It is slightly richer in aromatics because of the retardation of their secondary transformations (condensation, coke formation). [Pg.37]


See other pages where Coke formation zeolites is mentioned: [Pg.1541]    [Pg.94]    [Pg.361]    [Pg.318]    [Pg.321]    [Pg.325]    [Pg.325]    [Pg.356]    [Pg.50]    [Pg.273]    [Pg.287]    [Pg.48]    [Pg.1040]    [Pg.111]    [Pg.138]    [Pg.138]    [Pg.138]    [Pg.81]    [Pg.515]    [Pg.519]    [Pg.520]    [Pg.525]    [Pg.32]    [Pg.220]    [Pg.297]    [Pg.37]    [Pg.66]    [Pg.69]    [Pg.198]    [Pg.454]   
See also in sourсe #XX -- [ Pg.305 , Pg.306 , Pg.307 ]




SEARCH



Coke formation

Zeolite formation

© 2024 chempedia.info