Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coherent Raman optical activity

In the case of non-degenerate frequencies, the nonlocal third-order effects may give rise to chiral pump-probe spectroscopies. The only observation of a coherent Raman optical activity process to date is also due to a third-order pseudoscalar. Spiegel and Schneider have observed Raman optical activity in coherent anti-Stokes Raman scattering in a liquid of (-l-)-trans-pinane and report chiral signals that are 10 of the conventional electric-dipolar CARS intensity [23],... [Pg.366]

Nonlinear optical activity phenomena arise at third-order and include intensity dependent contributions to optical rotation and circular dichroism, as well as a coherent form of Raman optical activity. The third-order observables are - like their linear analogs - pseudoscalars (scalars which change sign under parity) and require electric-dipole as well as magnetic-dipole transitions. Nonlinear optical activity is circular differential. [Pg.360]

Plenary 7(5. N I Koroteev et al, e-mail address Koroteev nik.phys.iusu.su (CARS/CSRS, CAHRS, BioCARS). A survey of the many applications of what we call the Class II spectroscopies from third order and beyond. 2D and 3D Raman imaging. Coherence as stored infonuation, quantum infonuation (the qubit ). Uses tenus CARS/CSRS regardless of order. BioCARS is fourtli order in optically active solutions. [Pg.1218]

Isotope superlattices of nonpolar semiconductors gave an insight on how the coherent optical phonon wavepackets are created [49]. High-order coherent confined optical phonons were observed in 70Ge/74Ge isotope superlattices. Comparison with the calculated spectrum based on a planar force-constant model and a bond polarizability approach indicated that the coherent phonon amplitudes are determined solely by the degree of the atomic displacement, and that only the Raman active odd-number-order modes are observable. [Pg.35]

When metals have Raman active phonons, optical pump-probe techniques can be applied to study their coherent dynamics. Hase and coworkers observed a periodic oscillation in the reflectivity of Zn and Cd due to the coherent E2g phonons (Fig. 2.17) [56]. The amplitude of the coherent phonons of Zn decreased with raising temperature, in accordance with the photo-induced quasi-particle density n.p, which is proportional to the difference in the electronic temperature before and after the photoexcitation (Fig. 2.17). The result indicated the resonant nature of the ISRS generation of coherent phonons. Under intense (mJ/cm2) photoexcitation, the coherent Eg phonons of Zn exhibited a transient frequency shift similar to that of Bi (Fig. 2.9), which can be understood as the Fano interference [57], A transient frequency shift was aslo observed for the coherent transverse optical (TO) phonon in polycrystalline Zr film, in spite of much weaker photoexcitation [58],... [Pg.38]

In impulsive multidimensional (1VD) Raman spectroscopy a sample is excited by a train of N pairs of optical pulses, which prepare a wavepacket of quantum states. This wavepacket is probed by the scattering of the probe pulse. The electronically off-resonant pulses interact with the electronic polarizability, which depends parametrically on the vibrational coordinates (19), and the signal is related to the 2N + I order nonlinear response (18). Seventh-order three-dimensional (3D) coherent Raman scattering, technique has been proposed by Loring and Mukamel (20) and reported in Refs. 12 and 21. Fifth-order two-dimensional (2D) Raman spectroscopy, proposed later by Tanimura and Mukamel (22), had triggered extensive experimental (23-28) and theoretical (13,25,29-38) activity. Raman techniques have been reviewed recently (12,13) and will not be discussed here. [Pg.362]

Natural ROA offers the interesting prospect of measuring optical activity in pure rotational transitions of gas phase chiral molecules. Although such observations have not yet been reported, the detailed theory of rotational ROA in chiral symmetric tops has been published lS7, and the experiment should be feasible using existing technology such as optical multichannel detection. It is also possible that one of the coherent Raman techniques discussed below could be advantageous. [Pg.262]

Semimetals bismuth (Bi) and antimony (Sb) have been model systems for coherent phonon studies. They both have an A7 crystalline structure and sustain two Raman active optical phonon modes of A g and Eg symmetries (Fig. 2.4). Their pump-induced reflectivity change, shown in Fig. 2.7, consists of oscillatory (ARosc) and non-oscillatory (ARnonosc) components. ARosc is dominated by the coherent nuclear motion of the A g and Eg symmetries, while Af nonosc is attributed to the modification in the electronic and the lattice temperatures. [Pg.30]

The application of lasers in optical experimental techniques has led to a rapid development of research into the properties of elementary excitations in solids. In addition to the conventional methods of linear crystal optics, Raman scattering of light (RSL) has become one of the principal research methods, as have its various modifications, such as coherent active Raman spectroscopy and others. [Pg.166]

Michele Marrocco, PhD, is a researcher in laser spectroscopy at ENEA (Rome, Italy) (1999 to present). He received his degree in physics from the University of Rome in 1994. He was employed as a postdoctorate at the Max-Planck Institute for Quantum Optics (Munich, Germany), as a researcher at the Quantum Optics Labs at the University of Rome (Rome, Italy), and as an optics researcher by the army. His research activities include traditional and innovative spectroscopic techniques for diagnosis of combustion and nanoscopic systems studied by means of optical microscopy. The techniques used include adsorption, laser induced fluorescence, spontaneous Raman, stimulated Raman gain, stimulated Raman loss, coherent anti-Stokes Raman, degenerate four wave mixing, polarization spectroscopy, laser induced breakdown, laser induced incandescence, laser induced thermal gratings. He has over 30 technical publications. [Pg.770]


See other pages where Coherent Raman optical activity is mentioned: [Pg.365]    [Pg.278]    [Pg.365]    [Pg.278]    [Pg.47]    [Pg.241]    [Pg.278]    [Pg.4211]    [Pg.313]    [Pg.1190]    [Pg.431]    [Pg.164]    [Pg.103]    [Pg.131]    [Pg.910]    [Pg.115]    [Pg.139]    [Pg.281]    [Pg.45]    [Pg.20]    [Pg.83]    [Pg.302]    [Pg.206]    [Pg.257]    [Pg.770]    [Pg.1190]    [Pg.131]    [Pg.90]    [Pg.542]    [Pg.179]    [Pg.183]    [Pg.255]    [Pg.115]    [Pg.288]    [Pg.324]    [Pg.555]    [Pg.8]   
See also in sourсe #XX -- [ Pg.278 ]




SEARCH



Optical Raman

Optical coherence

Raman activity

Raman optical activity

© 2024 chempedia.info