Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cocatalyst

The alkynyl ketones 840 can be prepared by the reaction of acyi chlorides with terminal alkynes, Cul in the presence of Et3N is the cocatalyst[719]. (1-Alkynyl)tributylstannanes are also used for the alkynyl ketone synthesis[720]. The a,. 3-alkynic dithio and thiono esters 842 can be prepared by the reaction of the corresponding acid chloride 841 with terminal alkynes[721,722]. [Pg.253]

A single catalyst is often not sufficient in cationic polymerizations frequently a cocatalyst is required. [Pg.411]

The Lewis acids must be used with a protonic cocatalyst such as water or methanol which generates protons through the following kinds of equilibria ... [Pg.411]

With insufficient catalyst these equilibria lie too far to the left, while excess cocatalyst destroys the catalyst and/or terminates the chain. The optimum proportion of catalyst and cocatalyst varies with the system employed and also with the solvent for a specific system. [Pg.411]

Cocatalysts of two types occur (/) proton-donor substances, such as hydroxy compounds and proton acids, and (2) cation-forming substances (other than proton), including alkyl and acyl haUdes which form carbocations and other donor substances leading to oxonium, sulfonium, halonium, etc, complexes. [Pg.564]

Although catalytic hydration of ethylene oxide to maximize ethylene glycol production has been studied by a number of companies with numerous materials patented as catalysts, there has been no reported industrial manufacture of ethylene glycol via catalytic ethylene oxide hydrolysis. Studied catalysts include sulfonic acids, carboxyUc acids and salts, cation-exchange resins, acidic zeoHtes, haUdes, anion-exchange resins, metals, metal oxides, and metal salts (21—26). Carbon dioxide as a cocatalyst with many of the same materials has also received extensive study. [Pg.359]

Various ways of overcoming the PTA oxidation problem have been incorporated into commercial processes. The predominant solution is the use of high concentrations of manganese and cobalt ions (2,248—254), optionally with various cocatalysts (204,255,256), in the presence of an organic or inorganic bromide promoter in acetic acid solvent. Operational temperatures are rather high (ca 200°C). A lesser but significant alternative involves isolation of intermediate PTA, conversion to methyl/)-toluate, and recycle to the reactor. The ester is oxidized to monomethyl terephthalate, which is subsequentiy converted to DMT and purified by distillation (248,257—264). [Pg.344]

Friedel-Crafts (Lewis) acids have been shown to be much more effective in the initiation of cationic polymerization when in the presence of a cocatalyst such as water, alkyl haUdes, and protic acids. Virtually all feedstocks used in the synthesis of hydrocarbon resins contain at least traces of water, which serves as a cocatalyst. The accepted mechanism for the activation of boron trifluoride in the presence of water is shown in equation 1 (10). Other Lewis acids are activated by similar mechanisms. In a more general sense, water may be replaced by any appropriate electron-donating species (eg, ether, alcohol, alkyl haUde) to generate a cationic intermediate and a Lewis acid complex counterion. [Pg.351]

To avoid high resin chloride content associated with the use of high concentrations of aluminum trichloride, a ttialhylalurninum—water cocatalyst system in a 1.0 0.5 to 1.0 mole ratio has been used in conjunction with an organic chloride for the polymerization of P-pinene (95). Softening points up to 120°C were achieved with 1—3 Gardner unit improvement in color over AlCl produced resins. [Pg.357]

Two-step approaches based on cocatalysts or alternate catalysts and one-step approaches which circumvent the formation of the biscarbamate intermediates have also been reported (76—81). [Pg.454]

Another problem arises from brominated aromatic species derived from inorganic bromides used as oxidation cocatalysts. As a result, the cmde NDA is converted to its dimethyl ester, DMNDA [840-65-3] and solvent recrystalHzed to give a high purity diester (36—38). A process for purifying NDA directly by hydrogenation (pure TA process) has also been described (39). [Pg.293]

Other THF polymerization processes that have been disclosed in papers and patents, but which do not appear to be in commercial use in the 1990s, include catalysis by boron trifluoride complexes in combination with other cocatalysts (241—245), modified montmorrillonite clay (246—248) or modified metal oxide composites (249), rare-earth catalysts (250), triflate salts (164), and sulfuric acid or Aiming sulfuric acid with cocatalysts (237,251—255). [Pg.365]

Rubidium-87 emits beta-particles and decomposes to strontium. The age of some rocks and minerals can be measured by the determination of the ratio of the mbidium isotope to the strontium isotope (see Radioisotopes). The technique has also been studied in dating human artifacts. Rubidium has also been used in photoelectric cells. Rubidium compounds act as catalysts in some organic reactions, although the use is mainly restricted to that of a cocatalyst. [Pg.281]

Other apphcations of sodium bromide iaclude use ia the photographic iadustry both to make light-sensitive silver bromide [7785-23-1] emulsions and to lower the solubiUty of silver bromides during the developing process use as a wood (qv) preservative in conjunction with hydrogen peroxide (14) as a cocatalyst along with cobalt acetate [917-69-1] for the partial oxidation of alkyl side chains on polystyrene polymers (15) and as a sedative, hypnotic, and anticonvulsant. The FDA has, however, indicated that sodium bromide is ineffective as an over-the-counter sleeping aid for which it has been utilized (16). [Pg.189]

When free-radical initiation is used, cocatalysts, eg, phosphites (112), and uv photoinitiators such as acetophenone derivatives (113) can be used to increase the rate and conversion of the olefins to the desired mercaptans. [Pg.135]

Another sulfur dioxide appHcation in oil refining is as a selective extraction solvent in the Edeleanu process (323), wherein aromatic components are extracted from a kerosene stream by sulfur dioxide, leaving a purified stream of saturated aHphatic hydrocarbons which are relatively insoluble in sulfur dioxide. Sulfur dioxide acts as a cocatalyst or catalyst modifier in certain processes for oxidation of o-xylene or naphthalene to phthaHc anhydride (324,325). [Pg.148]

Thioglycohc acid is recommended as a cocatalyst with strong mineral acid in the manufacture of bisphenol A by the condensation of phenol and acetone. The effect of the mercapto group (mercaptocarboxyhc acid) is attributed to the formation of a more stable carbanion intermediate of the ketone that can alkylate the phenol ring faster. The total amount of the by-products is considerably reduced (52). [Pg.6]

The formation of isocyanurates in the presence of polyols occurs via intermediate aHophanate formation, ie, the urethane group acts as a cocatalyst in the trimerization reaction. By combining cyclotrimerization with polyurethane formation, processibiUty is improved, and the friabiUty of the derived... [Pg.349]

Complexation of the initiator and/or modification with cocatalysts or activators affords greater polymerization activity (11). Many of the patented processes for commercially available polymers such as poly(MVE) employ BE etherate (12), although vinyl ethers can be polymerized with a variety of acidic compounds, even those unable to initiate other cationic polymerizations of less reactive monomers such as isobutene. Examples are protonic acids (13), Ziegler-Natta catalysts (14), and actinic radiation (15,16). [Pg.514]

Tertiary stibines have been widely employed as ligands in a variety of transition metal complexes (99), and they appear to have numerous uses in synthetic organic chemistry (66), eg, for the olefination of carbonyl compounds (100). They have also been used for the formation of semiconductors by the metal—organic chemical vapor deposition process (101), as catalysts or cocatalysts for a number of polymerization reactions (102), as ingredients of light-sensitive substances (103), and for many other industrial purposes. [Pg.207]

CgH BiBr2, and diphenylbromobismuthine [39248-62-9] C22H2QBiBr, respectively, with lithium aluminum hydride or sodium borohydride at low temperatures yielded only black polymeric substances of empirical formula C H Bi (33). It has been claimed (34) that dimethylbismuthine and diphenylbismuthine can be used as cocatalysts for the polymerisation of ethylene (qv), propylene (qv), and 1,3-butadiene. The source of these bismuthines, however, was not mentioned. [Pg.131]

Tertiary bismuthines appear to have a number of uses in synthetic organic chemistry (32), eg, they promote the formation of 1,1,2-trisubstituted cyclopropanes by the iateraction of electron-deficient olefins and dialkyl dibromomalonates (100). They have also been employed for the preparation of thin films (qv) of superconducting bismuth strontium calcium copper oxide (101), as cocatalysts for the polymerization of alkynes (102), as inhibitors of the flammabihty of epoxy resins (103), and for a number of other industrial purposes. [Pg.131]

The catalytic cycle (Fig. 5) (20) is well estabUshed, although the details of the conversion of the intermediate CH COI and methanol into the product are not well understood the mechanism is not shown for this part of the cycle, but it probably involves rhodium in a catalytic role. The CH I works as a cocatalyst or promoter because it undergoes an oxidative addition with [Rh(CO)2l2]% and the resulting product has the CO ligand bonded cis to the CH ligand these two ligands are then poised for an insertion reaction. [Pg.166]

Cocatalysts, such as diethylzinc and triethylboron, can be used to alter the molecular-weight distribution of the polymer (89). The same effect can also be had by varying the transition metal in the catalyst chromium-based catalyst systems produce polyethylenes with intermediate or broad molecular-weight distributions, but titanium catalysts tend to give rather narrow molecular-weight distributions. [Pg.203]

Triethyl aluminum, complexed with another electron donor, typically ethyl -anisate [94-30-4J, was used as cocatalyst with the FT-1 catalyst and acted to reduce and stabilize the active titanium-containing catalytic site. The early versions of the FT-1 catalyst required extremely high molar ratios (>400 1) of aluminum to titanium to obtain satisfactory activity and selectivity to isotactic polymer. This resulted in excessively high aluminum residues in the polymer. Later versions of the FT-1 catalyst attained much higher activity. [Pg.204]

Chlorination of OCT with chlorine at 90°C in the presence of L-type 2eohtes as catalyst reportedly gives a 56% yield of 2,5-dichlorotoluene (79). Pure 2,5-dichlorotoluene is also available from the Sandmeyer reaction on 2-amino-5-chlorotoluene. 3,4-Dichlorotoluene (l,2-dichloro-4-methylben2ene) is formed in up to 40% yield in the chlorination of PCT cataly2ed by metal sulfides or metal halide—sulfur compound cocatalyst systems (80). [Pg.55]


See other pages where Cocatalyst is mentioned: [Pg.272]    [Pg.412]    [Pg.414]    [Pg.236]    [Pg.376]    [Pg.376]    [Pg.551]    [Pg.564]    [Pg.353]    [Pg.356]    [Pg.357]    [Pg.383]    [Pg.383]    [Pg.385]    [Pg.385]    [Pg.411]    [Pg.411]    [Pg.343]    [Pg.208]    [Pg.373]    [Pg.102]    [Pg.168]    [Pg.204]    [Pg.53]   
See also in sourсe #XX -- [ Pg.31 ]

See also in sourсe #XX -- [ Pg.387 , Pg.395 , Pg.395 , Pg.396 , Pg.411 ]

See also in sourсe #XX -- [ Pg.10 , Pg.109 ]

See also in sourсe #XX -- [ Pg.165 ]

See also in sourсe #XX -- [ Pg.235 ]

See also in sourсe #XX -- [ Pg.178 ]

See also in sourсe #XX -- [ Pg.49 , Pg.153 ]

See also in sourсe #XX -- [ Pg.47 , Pg.60 , Pg.61 , Pg.62 ]

See also in sourсe #XX -- [ Pg.179 ]

See also in sourсe #XX -- [ Pg.21 ]

See also in sourсe #XX -- [ Pg.31 ]

See also in sourсe #XX -- [ Pg.22 , Pg.33 , Pg.44 , Pg.208 , Pg.243 , Pg.300 , Pg.375 ]

See also in sourсe #XX -- [ Pg.107 , Pg.115 , Pg.123 , Pg.173 , Pg.183 , Pg.184 , Pg.205 ]

See also in sourсe #XX -- [ Pg.49 , Pg.153 ]

See also in sourсe #XX -- [ Pg.580 , Pg.581 ]

See also in sourсe #XX -- [ Pg.168 ]




SEARCH



Cocatalysts

© 2024 chempedia.info