Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt/chromium alloys mechanical properties

Mechanical properties depend on the alloying elements. Addition of carbon to the cobalt base metal is the most effective. The carbon forms various carbide phases with the cobalt and the other alloying elements (see Carbides). The presence of carbide particles is controlled in part by such alloying elements such as chromium, nickel, titanium, manganese, tungsten, and molybdenum that are added during melting. The distribution of the carbide particles is controlled by heat treatment of the solidified alloy. [Pg.372]

Edwards e/a/. carried out controlled potential, slow strain-rate tests on Zimaloy (a cobalt-chromium-molybdenum implant alloy) in Ringer s solution at 37°C and showed that hydrogen absorption may degrade the mechanical properties of the alloy. Potentials were controlled so that the tensile sample was either cathodic or anodic with respect to the metal s free corrosion potential. Hydrogen was generated on the sample surface when the specimen was cathodic, and dissolution of the sample was encouraged when the sample was anodic. The results of these controlled potential tests showed no susceptibility of this alloy to SCC at anodic potentials. [Pg.476]

The most important application of chromium is in the production of steel. High-carbon and other grades of ferro-chomium alloys are added to steel to improve mechanical properties, increase hardening, and enhance corrosion resistance. Chromium also is added to cobalt and nickel-base alloys for the same purpose. [Pg.216]

The lattice of vanadium expands approximately linearly with the addition of aluminum [64]. The aluminum intermetallic compound, V3AI (V-25 atom% Al), expands the lattice by about 1% from 0.3025 nm in unalloyed vanadium to 0.3054 nm [64]. Molybdenum, cobalt and titanium also expand the lattice of vanadium, whereas elements such as chromium and iron cause the lattice to contract [83]. Addition of these elements can increase the mechanical strength of alloys relative to unalloyed vanadium [85]. For niobium and tantalum, mechanical properties can also be improved by alloying [86]. Buxbaum has patented a number of alloys of niobium, tantalum and vanadium for membrane use, including Ta-W, V-Co, V-Pd, V-Au, V-Cu, V-Al, Nb-Ag, Nb-Pt, Nb-Pd, V-Ni-Co, V-Ni-Pd, V-Nb-Pt, and V-Pd-Au [45]. [Pg.128]

Alloy steel pipe composition has various elements, with total concentration between 1.0% and 50% by weight, which enhances the mechanical properties and corrosion resistance. These steels can be grouped under low-alloy steels. Along with economic growth, the demand of alloy steel pipes and tubes for industrial use has increased enormously. The most common alloying elements are nickel, chromium, silicon, vanadium, and molybdeniun. Special pipe steels also contain very small amounts of aluminum, cobalt, tungsten, titanium, and zirconium. Alloy steel has different properties on the basis of its composition. Alloy steel tubes cater to domestic and industrial requirements, such as gas drilling, offshore projects, refineries, and petrochemical plants. [Pg.205]

Kilner, T., The Relationship of Microstructure to the Mechanical Properties of a Cobalt-Chromium-Molybdenum Alloy Used for Prosthetic Devices," Ph.D. thesis. University of Toronto, 1984. [Pg.844]

The materials currently used in the production of medical devices include stainless steels, cobalt-base alloys, titanium-base alloys, platinum-base alloys, and nickel-titanium alloys. Steels were the first modern metallic alloys to be used in orthopedics and initial problems with corrosion were overcome by modifying the composition of the steel with the addition of carbon, chromium, and molybdenum. Carbon was added at low concentrations (ca. 0.03-0.08%) to initiate carbide formation, while the addition of chromium (17-19%) facilitated the formation of a stable surface oxide layer and the presence of molybdenum (2.0-3.0%) was found to control corrosion. The compositions of stainless steels used can vary widely. Table V shows the limits for the chemical compositions of three different alloys containing eleven different elements together with the mechanical properties for the samples after annealing and cold working. [Pg.43]

Metallic biomaterials can be inert or bioactive. Stainless steel and cobalt-chromium are classic examples of inert metallic biomaterials, their inertness being due to a passive oxide layer on their surface. Titanium and their alloys fall into the bioactive metallic biomaterial group and have good bone-bonding abilities. As they also have favourable physical and mechanical properties, they have found increasing applications as orthopaedic and dental implants. Typically, metals and alloys are assessed thermally with differential scanning calorimetry (DSC) and differential thermal analysis (DTA) for T ,. [Pg.260]


See other pages where Cobalt/chromium alloys mechanical properties is mentioned: [Pg.154]    [Pg.663]    [Pg.152]    [Pg.647]    [Pg.739]    [Pg.108]    [Pg.119]    [Pg.636]    [Pg.728]    [Pg.134]    [Pg.227]    [Pg.1195]    [Pg.227]    [Pg.116]    [Pg.300]    [Pg.136]    [Pg.836]    [Pg.665]    [Pg.136]    [Pg.55]    [Pg.431]    [Pg.131]    [Pg.89]    [Pg.24]   
See also in sourсe #XX -- [ Pg.173 ]

See also in sourсe #XX -- [ Pg.173 ]




SEARCH



Alloying chromium

Alloys mechanical properties

Chromium alloy

Chromium properties

Cobalt alloys

Cobalt properties

Cobalt-chromium

Cobalt-chromium alloy

Mechanical alloying

Mechanical alloying alloys

© 2024 chempedia.info