Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt-chromium oxide catalysts

Chromium compounds as catalysts, 188 Chromium oxide in catalytic converter, 62 Chromium oxide catalysts, 175-184 formation of active component, 176,177 of Cr-C bonds, 177, 178 propagation centers formation of, 175-178 number of, 197, 198 change in, 183, 184 reduction of active component, 177 Clear Air Act of 1970, 59, 62 Cobalt oxide in catalytic converter, 62 Cocatalysts, 138-141, 152-154 Competitive reactions, 37-43 Copper chromite, oxidation of CO over, 86-88... [Pg.416]

We begin with the structure of a noble metal catalyst, where the emphasis is placed on the preparation of rhodium on aluminum oxide and the nature of the metal support interaction. Next, we focus on a promoted surface in a review of potassium on noble metals. This section illustrates how single crystal techniques have been applied to investigate to what extent promoters perturb the surface of a catalyst. The third study deals with the sulfidic cobalt-molybdenum catalysts used in hydrotreating reactions. Here, we are concerned with the composition and structure of the catalytically active surface, and how it evolves as a result of the preparation. In the final study we discuss the structure of chromium oxide catalysts in the polymerization of ethylene, along with the polymer product that builds up on the surface of the catalyst. [Pg.251]

Iron-chromium oxide catalysts, reduced with hydrogen-containing in the conversion plants, permit reactions temperatures of 350 to 380°C (high temperature conversion), the carbon monoxide content in the reaction gas is thereby reduced to ca. 3 to 4% by volume. Since, these catalysts are sensitive to impurities, cobalt- and molybdenum-(sulfide)-containing catalysts are used for gas mixtures with high sulfur contents. With copper oxide/zinc oxide catalysts the reaction proceeds at 200 to 250°C (low temperature conversion) and carbon monoxide contents of below 0.3% by volume are attained. This catalyst, in contrast to the iron oxide/chromium oxide high temperature conversion catalyst, is, however, very sensitive to sulfur compounds, which must be present in concentrations of less than 0.1 ppm. [Pg.36]

Hutchings, G.J., Copperthwaite, R.G., Gottschalk, F.M., Hunter, R., Mellor, J., Orchard, S.W., and Sangiorgio, T. A comparative evaluation of cobalt chromium oxide, cobalt manganese oxide, and copper manganese oxide as catalysts for the water-gas shift reaction. Journal of Catalysis, 1992, 137, 408. [Pg.328]

Other Early Developments. In addition to the breakthrough by Ziegler, two other discoveries of ethylene polymerization catalysts were made in the early 1950s. A patent by Standard Oil of Indiana, filed in 1951, disclosed reduced molybdenum oxide or cobalt molybdate on alumina (13). At the same time, Phillips discovered supported chromium oxide catalysts, prepared by impregnation of a silica-alumina support with Cr03 (14 16). Both the Phillips catalyst and titanium chloride based Ziegler catalysts are widely used in the production of high density polyethylene (HDPE). [Pg.7425]

Butane-Naphtha Catalytic Liquid-Phase Oxidation. Direct Hquid-phase oxidation ofbutane and/or naphtha [8030-30-6] was once the most favored worldwide route to acetic acid because of the low cost of these hydrocarbons. Butane [106-97-8] in the presence of metallic ions, eg, cobalt, chromium, or manganese, undergoes simple air oxidation in acetic acid solvent (48). The peroxidic intermediates are decomposed by high temperature, by mechanical agitation, and by action of the metallic catalysts, to form acetic acid and a comparatively small suite of other compounds (49). Ethyl acetate and butanone are produced, and the process can be altered to provide larger quantities of these valuable materials. Ethanol is thought to be an important intermediate (50) acetone forms through a minor pathway from isobutane present in the hydrocarbon feed. Formic acid, propionic acid, and minor quantities of butyric acid are also formed. [Pg.68]

HDPE resias are produced ia industry with several classes of catalysts, ie, catalysts based on chromium oxides (Phillips), catalysts utilising organochromium compounds, catalysts based on titanium or vanadium compounds (Ziegler), and metallocene catalysts (33—35). A large number of additional catalysts have been developed by utilising transition metals such as scandium, cobalt, nickel, niobium, molybdenum, tungsten, palladium, rhodium, mthenium, lanthanides, and actinides (33—35) none of these, however, are commercially significant. [Pg.383]

Ammonia production from natural gas includes the following processes desulfurization of the feedstock primary and secondary reforming carbon monoxide shift conversion and removal of carbon dioxide, which can be used for urea manufacture methanation and ammonia synthesis. Catalysts used in the process may include cobalt, molybdenum, nickel, iron oxide/chromium oxide, copper oxide/zinc oxide, and iron. [Pg.64]

A detailed study of the dehydrogenation of 10.1 l-dihydro-5//-benz[6,/]azcpinc (47) over metal oxides at 550 C revealed that cobalt(II) oxide, iron(III) oxide and manganese(III) oxide are effective catalysts (yields 30-40%), but formation of 5//-dibenz[7),/]azepinc (48) is accompanied by ring contraction of the dihydro compound to 9-methylacridine and acridine in 3-20 % yield.111 In contrast, tin(IV) oxide, zinc(II) oxide. chromium(III) oxide, cerium(IV) oxide and magnesium oxide arc less-effective catalysts (7-14% yield) but provide pure 5H-dibenz[b,/]azepine. On the basis of these results, optimum conditions (83 88% selectivity 94-98 % yield) for the formation of the dibenzazepine are proposed which employ a K2CO,/ Mn203/Sn02/Mg0 catalyst (1 7 3 10) at 550 C. [Pg.235]

Supported Rhodium Catalysts Alkali Promoters on Metal Surfaces Cobalt-Molybdenum Sulfide Hydrodesulfurization Catalysts Chromium Oxide Polymerization Catalysts... [Pg.246]

Cobalt-molybdenum sulfide hydrodesulfurization catalysts Chromium oxide polymerization catalysts... [Pg.251]

The activity of NiO has been studied by Wagner and Hauffe (47) and others (22,49,50). Catalytic activity of this oxide is enhanced considerably by the addition of manganese dioxide. For the simple oxides, the activity decreases in the following series Mn02 > C02O3 > NiO > CuO (48). The catalysts containing nickel oxide are promoted by the addition of oxides of iron, copper, aluminum, and chromium. Iron, nickel, and cobalt chromites, as catalysts for the oxidation of CO, were investigated by Lory (30). [Pg.184]

At present, the main industrial catalyst of ammonia oxidation is platinum and its alloys with aluminium and rhodium. Taking into account the deficit and high cost of platinum metals, the dcCTcasing of the consumption and losses of platinum metals is an urgent problem. Therefore, several compositions of complex oxide catalysts have been developed with iron (111), cobalt and chromium oxides as an active component. Complex oxides with perovskite structure are used as new catalysts they provide selective oxidation of ammonia with an yield not less than 90 %. The authors of [33] proposed to use perovskite powders LaMeOj, where Me=Fe, Co, Ni, Cr, Mn, and La,.,Sr,Me03, where Me=Co, Mn and x=0.25-0.75. To prepare these compounds, they used the precipitation by tetraethyl ammonia from diluted nitrate solutions taken at necessary ratios. The powders as prepared are poorly molded as in the form of honeycomb stractures as well as in the form of simple granules. [Pg.192]

The oxides of certain metals of the first, sixth, seventh, and eighth groups of the periodic system, such as copper, chromium, manganese, nickel, cobalt, etc., when deposited on non-vitreous alumina catalyze dehydrogenation reactions. These materials are also active oxidation catalysts and most of the catalysts used today for oxidation reactions occur in these periodic groupings. Hence, the actions of these materials may lead to difficulties in the separation of products because of side reactions which may be set up. ... [Pg.52]

In order to overcome certain difficulties such as the dissipation of heat and the use of inflammable mixtures, certain liquid phase processes have been proposed for the oxidation of aromatic hydrocarbons and compounds. In such a process 100 the aromatic hydrocarbons or their halogenated derivatives are treated with air or gas containing free molecular oxygen in the liquid phase at temperatures above ISO0 C. and under pressure in the presence of a substantial quantity of liquid water. A small quantity of such oxidation catalysts as oxides or hydroxides of copper, nickel, cobalt, iron or oxides of manganese, cerium, osmium, uranium, vanadium, chromium and zinc is used. The formation of benzaldehyde from toluene is claimed for the process. [Pg.389]


See other pages where Cobalt-chromium oxide catalysts is mentioned: [Pg.68]    [Pg.261]    [Pg.102]    [Pg.244]    [Pg.97]    [Pg.46]    [Pg.190]    [Pg.41]    [Pg.165]    [Pg.199]    [Pg.247]    [Pg.354]    [Pg.68]    [Pg.68]    [Pg.546]    [Pg.433]    [Pg.192]    [Pg.33]    [Pg.499]    [Pg.322]    [Pg.312]    [Pg.426]    [Pg.123]    [Pg.225]    [Pg.367]    [Pg.394]    [Pg.419]   
See also in sourсe #XX -- [ Pg.275 ]




SEARCH



Catalyst chromium

Chromium oxidants

Chromium oxidation catalyst

Chromium oxide

Chromium oxide catalysts

Chromium oxids

Cobalt catalyst

Cobalt catalysts catalyst

Cobalt oxidant

Cobalt oxide

Cobalt oxide catalyst

Cobalt oxidization

Cobalt-chromium

Cobaltous oxide catalysts

Oxidation cobalt

Oxides chromium oxide

© 2024 chempedia.info