Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt catalysts activation

Later studies by Wells and co-workers, however, showed that the translcis ratios of the 2-butene formed from hydrogenation of 1,3-butadiene over nickel and cobalt catalysts depended on the reduction temperature employed for catalyst activation. High translcis ratios of 3.5-8 were obtained over the catalyst reduced at 400°C, while the ratios decreased to 2 with the catalysts activated below 350°C.119,120 The characteristic properties of the nickel and cobalt catalysts activated at 400°C were attributed to a modification of the catalysts caused by the sulfur compounds contained in the support that occurred at such a high reduction temperature as 400°C.121... [Pg.95]

The cobalt catalyst can be introduced into the reactor in any convenient form, such as the hydrocarbon-soluble cobalt naphthenate [61789-51 -3] as it is converted in the reaction to dicobalt octacarbonyl [15226-74-17, Co2(CO)g, the precursor to cobalt hydrocarbonyl [16842-03-8] HCo(CO)4, the active catalyst species. Some of the methods used to recover cobalt values for reuse are (11) conversion to an inorganic salt soluble ia water conversion to an organic salt soluble ia water or an organic solvent treatment with aqueous acid or alkah to recover part or all of the HCo(CO)4 ia the aqueous phase and conversion to metallic cobalt by thermal or chemical means. [Pg.458]

A thkd method utilizes cooxidation of an organic promoter with manganese or cobalt-ion catalysis. A process using methyl ethyl ketone (248,252,265—270) was commercialized by Mobil but discontinued in 1973 (263,264). Other promoters include acetaldehyde (248,271—273), paraldehyde (248,274), various hydrocarbons such as butane (270,275), and others. Other types of reported activators include peracetic acid (276) and ozone (277), and very high concentrations of cobalt catalyst (2,248,278). [Pg.344]

Unmodified Cobalt Process. Typical sources of the soluble cobalt catalyst include cobalt alkanoates, cobalt soaps, and cobalt hydroxide [1307-86 ] (see Cobalt compounds). These are converted in situ into the active catalyst, HCo(CO)4, which is in equihbrium with dicobalt octacarbonyl... [Pg.466]

Because of its volatility, the cobalt catalyst codistills with the product aldehyde necessitating a separate catalyst separation step known as decobalting. This is typically done by contacting the product stream with an aqueous carboxyhc acid, eg, acetic acid, subsequently separating the aqueous cobalt carboxylate, and returning the cobalt to the process as active catalyst precursor (2). Alternatively, the aldehyde product stream may be decobalted by contacting it with aqueous caustic soda which converts the catalyst into the water-soluble Co(CO). This stream is decanted from the product, acidified, and recycled as active HCo(CO)4. [Pg.466]

Two classes of metals have been examined for potential use as catalytic materials for automobile exhaust control. These consist of some of the transitional base metal series, for instance, cobalt, copper, chromium, nickel, manganese, and vanadium and the precious metal series consisting of platinum [7440-06-4], Pt palladium [7440-05-3], Pd rhodium [7440-16-6], Rh iridium, [7439-88-5], Ir and mthenium [7440-18-8], Ru. Specific catalyst activities are shown in Table 3. [Pg.487]

Carbon monoxide has been found to poison cobalt molybdate catalysts. It causes not only instantaneous deactivation but a cumulative deactivation as well. It should be removed from treat gas entirely or at least reduced to a very low value. Carbon dioxide also must be removed since it is converted to CO in the reducing atmosphere employed in Hydrofining. Liquid water can damage the structural integrity of the catalyst. Water, in the form of steam does not necessarily hurt the catalyst. In fact 30 psig steam/air mixtures are used to regenerate the catalyst. Also, steam appears to enhance the catalyst activity in... [Pg.66]

In addition to the Raney nickel catalysts, Raney catalysts derived from iron, cobalt, and copper have been examined for their action on pyridine. At the boiling point of pyridine, degassed Raney iron gave only a very small yield of 2,2 -bipyridine but the activity of iron in this reaction is doubtful as the catalyst was subsequently found to contain 1.44% of nickel. Traces of 2,2 -bipyridine (detected spectroscopically) were formed from pyridine and a degassed, Raney cobalt catalyst but several Raney copper catalysts failed to produce detectable quantities of 2,2 -bipyridine following heating with pyridine. [Pg.182]

Allison, M. and Bennet, A., Novel, Highly Active Iron and Cobalt Catalysts for Olefin Polymerization, CHEMTECH, July, 1999, pp. 24-28. [Pg.321]

Cobalt catalysts such as HCo(CO)4 are widely used for hydroformyla-tion of higher alkenes, despite the higher temperatures and pressures required. The main reason for this is that these catalysts are also efficient alkene isomerization catalysts, allowing a mix of internal and terminal alkenes to be used in the process. Catalyst recovery is more of a problem here, involving production of some waste and adding significantly to the complexity of the process. A common recovery method involves treating the catalyst with aqueous base to make it water soluble, followed by separation and subsequent treatment with acid to recover active catalyst (4.3). [Pg.112]

The present study revealed effects of various rutile/anatase ratios in titania on the reduction behaviors of titania-supported cobalt catalysts. It was found that the presence of rutile phase in titania could facilitate the reduction process of the orbalt catalyst. As a matter of fact, the number of reduced cobalt metal surface atoms, which is related to the overall activity during CO hydrogenation increased. [Pg.285]

Hydrogen chemisorption Static H2 chemisorption at 100°C on the reduced cobalt catalysts was used to determine the number of reduced surface cobalt metal atoms. This is related to the overall activity of the catalysts during CO hydrogenation. Gas volumetric chemisorption at 100°C was performed using the method described by Reuel and Bartholomew [6]. The experiment was performed in a Micromeritics ASAP 2010 using ASAP 2010C V3.00 software. [Pg.286]

Interestingly, the activity of the corresponding cobalt catalyst possessing a pincer-type ligand is higher than that of the iron complex. In addition, the cobalt complex also acts as a catalyst in asymmetric mtermolecular cyclopropanations. [Pg.49]

While the control resins were deep red in color due to the presence of soluble porphyrin complexes, the methacrylate resins obtained after removal of the polyethylene-supported catalysts varied from light yellow to nearly water-white (APHA < 25). UV-Vis spectrophotometric analysis of the yellow resins indicated an absorption signal for the cobalt porphyrin complex Soret band (wavelength of cobalt(ll) porphyrin species appears at -415 nm free porphyrin ligand is formd at -423 tun). Resin samples that visttally appear as water-white show little or no porphyrin species present in the spectrum. Measured catalyst activity and PDl of the polyethylene-supported porphyrin complexes are in the expected range for soluble porphyrin CCT catalysts (PDl = M /Mn - 1.2- 2.0)." The screening resrrlts clearly... [Pg.324]

We have demonstrated a new class of effective, recoverable thermormorphic CCT catalysts capable of producing colorless methacrylate oligomers with narrow polydispersity and low molecular weight. For controlled radical polymerization of simple alkyl methacrylates, the use of multiple polyethylene tails of moderate molecular weight (700 Da) gave the best balance of color control and catalyst activity. Porphyrin-derived thermomorphic catalysts met the criteria of easy separation from product resin and low catalyst loss per batch, but were too expensive for commercial implementation. However, the polyethylene-supported cobalt phthalocyanine complex is more economically viable due to its greater ease of synthesis. [Pg.327]

Rhodium and cobalt participate in several reactions that are of value in organic syntheses. Rhodium and cobalt are active catalysts for the reaction of alkenes with hydrogen and carbon monoxide to give aldehydes, known as hydroformylation,281... [Pg.759]

The polymers were converted to supported catalysts corresponding to homogeneous complexes of cobalt, rhodium and titanium. The cobalt catalyst exhibited no reactivity in a Fischer-Tropsch reaction, but was effective in promoting hydroformylation, as was a rhodium analog. A polymer bound titanocene catalyst maintained as much as a 40-fold activity over homogeneous titanocene in hydrogenations. The enhanced activity indicated better site isolation even without crosslinking. [Pg.7]

In 1968 Wilkinson discovered that phosphine-modified rhodium complexes display a significantly higher activity and chemoselectivity compared to the first generation cobalt catalyst [29]. Since this time ligand modification of the rhodium catalyst system has been the method of choice in order to influence catalyst activity and selectivity [10]. [Pg.148]

The catalyst activity is so high that uranium concentration lower than 0.1 millimoles per liter allows a complete conversion of butadiene to be obtained in a few hours, at 20°C, The transfer reaction of uranium based catalyst is similar to that of conventional 3d-block elements (titanium, cobalt, nickel) so that the molecular weight of the polymer is affected by polymerization temperature, polymerization time and monomer concentration in the customary way. This is in contrast, as we shall see later on, to some catalysts based on 4 f-block elements. Uranium based catalysts are able to polymerize isoprene and other dienes to high cis polymers the cis content of polyisoprene is 94%, somewhat inferior to titanium based catalysts. In contrast, with 3d-block elements an "all cis", random butadiene-isoprene... [Pg.39]

Until recently, the hydroformylation using palladium had been scarcely explored as the activity of palladium stayed behind that of more active platinum complexes. The initiating reagents are often very similar to those of platinum, i.e., divalent palladium salts, which under the reaction conditions presumably form monohydrido complexes of palladium(II). A common precursor is (39). The mechanism for palladium catalysts is, therefore, thought to be the same as that for platinum. New cationic complexes of palladium that are highly active as hydroformylation catalysts were discovered by Drent and co-workers at Shell and commercial applications may be expected, involving replacement of cobalt catalysts. [Pg.153]

In a different approach three different structurally defined aza-crown ethers were treated with 10 different metal salts in a spatially addressable format in a 96-well microtiter plate, producing 40 catalysts, which were tested in the hydrolysis of /xnitrophenol esters.32 A plate reader was used to assess catalyst activity. A cobalt complex turned out to be the best catalyst. Higher diversity is potentially possible, but this would require an efficient synthetic strategy. This research was extended to include lanthanide-based catalysts in the hydrolysis of phospho-esters of DNA.33... [Pg.511]

The more active cobalt catalyst for pyrolytic reactions was prepared by microwave calcination of cobalt nitrate which was converted to cobalt oxide by rapid microwave heating [7]. [Pg.348]


See other pages where Cobalt catalysts activation is mentioned: [Pg.711]    [Pg.515]    [Pg.522]    [Pg.274]    [Pg.684]    [Pg.711]    [Pg.515]    [Pg.522]    [Pg.274]    [Pg.684]    [Pg.164]    [Pg.42]    [Pg.232]    [Pg.422]    [Pg.44]    [Pg.838]    [Pg.101]    [Pg.164]    [Pg.309]    [Pg.537]    [Pg.1037]    [Pg.287]    [Pg.2]    [Pg.243]    [Pg.325]    [Pg.326]    [Pg.459]    [Pg.74]    [Pg.188]    [Pg.527]    [Pg.279]    [Pg.91]   
See also in sourсe #XX -- [ Pg.144 ]




SEARCH



Activity cobalt catalyst solutions

Cobalt activation

Cobalt catalyst

Cobalt catalyst alkali-activated

Cobalt catalysts active sites generation

Cobalt catalysts catalyst

Cobalt increases catalyst activity

Cobalt-molybdenum catalysts activity

Cobalt-molybdenum catalysts catalyst activity

© 2024 chempedia.info