Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst Co2

Organometallic reactions with CO2 - Catalyst design and mechanisms... [Pg.127]

Sulfite Oxidation Method The sulfite oxidation method is a classical, but still useful, technique for measuring kGa (or kLa) [4]. The method is based on the air oxidation of an aqueous solution of sodium sulfite (Na2S03) to sodium sulfate (Na2S04) with a cupric ion (Cu2+) or cobaltous ion (Co2+) catalyst. With appropriate concentrations of sodium sulfite (ca. 1 N) or cupric ions (> 10 3 mol 1 1), the value of k for the rate of oxygen absorption into sulfite solution, which can be determined by chemical analysis, is practically equal to kL for the physical oxygen absorption into sulfate solution in other words, the enhancement factor E, as defined by Equation 6.20, is essentially equal to unity. [Pg.110]

Another test is the total oxygen demand (TOD) test, which oxidizes the waste in the presence of a catalyst at 900°C in a stream of air. Under these harsh conditions, all the carbon is oxidized to CO2. The oxygen demand is calculated from the difference in oxygen content of the air before and after oxidation. The resulting value of TOD... [Pg.308]

We consider next perhaps the bet understood catalyzed reaction the oxidation of CO over group VIII metal catalysts. The reaction is an important environmental one since it involves the conversion of CO to CO2 in automobile catalytic converters. The mechanism is straightforward ... [Pg.735]

Cobalt has an odd number of electrons, and does not form a simple carbonyl in oxidation state 0. However, carbonyls of formulae Co2(CO)g, Co4(CO)i2 and CoJCO),6 are known reduction of these by an alkali metal dissolved in liquid ammonia (p. 126) gives the ion [Co(CO)4] ". Both Co2(CO)g and [Co(CO)4]" are important as catalysts for organic syntheses. In the so-called oxo reaction, where an alkene reacts with carbon monoxide and hydrogen, under pressure, to give an aldehyde, dicobalt octacarbonyl is used as catalyst ... [Pg.405]

Like butadiene, allene undergoes dimerization and addition of nucleophiles to give 1-substituted 3-methyl-2-methylene-3-butenyl compounds. Dimerization-hydration of allene is catalyzed by Pd(0) in the presence of CO2 to give 3-methyl-2-methylene-3-buten-l-ol (1). An addition reaction with. MleOH proceeds without CO2 to give 2-methyl-4-methoxy-3-inethylene-1-butene (2)[1]. Similarly, piperidine reacts with allene to give the dimeric amine 3, and the reaction of malonate affords 4 in good yields. Pd(0) coordinated by maleic anhydride (MA) IS used as a catalyst[2]. [Pg.450]

Chemical Conversion. In both on-site and merchant air separation plants, special provisions must be made to remove certain impurities. The main impurity of this type is carbon monoxide, CO, which is difficult to separate from nitrogen using distiHation alone. The most common approach for CO removal is chemical conversion to CO2 using an oxidation catalyst in the feed air to the air separation unit. The additional CO2 which results, along with the CO2 from the atmosphere, is then removed by a prepuritication unit in the air separation unit. [Pg.87]

Although many variations of the cyclohexane oxidation step have been developed or evaluated, technology for conversion of the intermediate ketone—alcohol mixture to adipic acid is fundamentally the same as originally developed by Du Pont in the early 1940s (98,99). This step is accomplished by oxidation with 40—60% nitric acid in the presence of copper and vanadium catalysts. The reaction proceeds at high rate, and is quite exothermic. Yield of adipic acid is 92—96%, the major by-products being the shorter chain dicarboxytic acids, glutaric and succinic acids,and CO2. Nitric acid is reduced to a combination of NO2, NO, N2O, and N2. Since essentially all commercial adipic acid production arises from nitric acid oxidation, the trace impurities patterns ate similar in the products of most manufacturers. [Pg.242]

The cobalt catalyst can be introduced into the reactor in any convenient form, such as the hydrocarbon-soluble cobalt naphthenate [61789-51 -3] as it is converted in the reaction to dicobalt octacarbonyl [15226-74-17, Co2(CO)g, the precursor to cobalt hydrocarbonyl [16842-03-8] HCo(CO)4, the active catalyst species. Some of the methods used to recover cobalt values for reuse are (11) conversion to an inorganic salt soluble ia water conversion to an organic salt soluble ia water or an organic solvent treatment with aqueous acid or alkah to recover part or all of the HCo(CO)4 ia the aqueous phase and conversion to metallic cobalt by thermal or chemical means. [Pg.458]

Formic acid can decompose either by dehydration, HCOOH — H2O + CO (AG° = —30.1 kJ/mol AH° = 10.5 kJ/mol) or by dehydrogenation, HCOOH H2 + CO2 (AG° = —58.6 kJ/mol AH° = —31.0 kJ/mol). The kinetics of these reactions have been extensively studied (19). In the gas phase metallic catalysts favor dehydrogenation, whereas oxide catalysts favor dehydration. Dehydration is the predominant mode of decomposition ia the Hquid phase, and is cataly2ed by strong acids. The mechanism is beheved to be as follows (19) ... [Pg.504]

In the presence of catalysts, the CO reacts with steam through the shift reaction to produce additional hydrogen and CO2 as represented by... [Pg.174]

Steam Reforming. In steam reforming, light hydrocarbon feeds ranging from natural gas to straight mn naphthas are converted to synthesis gas (H2, CO, CO2) by reaction with steam (qv) over a catalyst in a primary reformer furnace. This process is usually operated at 800—870°C and 2.17—2.86... [Pg.418]

This reaction is first conducted on a chromium-promoted iron oxide catalyst in the high temperature shift (HTS) reactor at about 370°C at the inlet. This catalyst is usually in the form of 6 x 6-mm or 9.5 x 9.5-mm tablets, SV about 4000 h . Converted gases are cooled outside of the HTS by producing steam or heating boiler feed water and are sent to the low temperature shift (LTS) converter at about 200—215°C to complete the water gas shift reaction. The LTS catalyst is a copper—zinc oxide catalyst supported on alumina. CO content of the effluent gas is usually 0.1—0.25% on a dry gas basis and has a 14°C approach to equihbrium, ie, an equihbrium temperature 14°C higher than actual, and SV about 4000 h . Operating at as low a temperature as possible is advantageous because of the more favorable equihbrium constants. The product gas from this section contains about 77% H2, 18% CO2, 0.30% CO, and 4.7% CH. ... [Pg.419]

The conversion of CO to CO2 can be conducted in two different ways. In the first, gases leaving the gas scmbber are heated to 260°C and passed over a cobalt—molybdenum catalyst. These catalysts typically contain 3—4% cobalt(II) oxide [1307-96-6] CoO 13—15% molybdenum oxide [1313-27-5] MoO and 76—80% alumina, JSifDy and are offered as 3-mm extmsions, SV about 1000 h . On these catalysts any COS and CS2 are converted to H2S. Operating temperatures are 260—450°C. The gases leaving this shift converter are then scmbbed with a solvent as in the desulfurization step. After the first removal of the acid gases, a second shift step reduces the CO content in the gas to 0.25—0.4%, on a dry gas basis. The catalyst for this step is usually Cu—Zn, which may be protected by a layer of ZnO. [Pg.423]

The impurities usually found in raw hydrogen are CO2, CO, N2, H2O, CH, and higher hydrocarbons. Removal of these impurities by shift catalysis, H2S and CO2 removal, and the pressure-swing adsorption (PSA) process have been described (vide supra). Traces of oxygen in electrolytic hydrogen are usually removed on a palladium or platinum catalyst at room temperature. [Pg.428]

Fresh reducing gas is generated by reforming natural gas with steam. The natural gas is heated in a recuperator, desulfurized to less than 1 ppm sulfur, mixed with superheated steam, further preheated to 620°C in another recuperator, then reformed in alloy tubes filled with nickel-based catalyst at a temperature of 830°C. The reformed gas is quenched to remove water vapor, mixed with clean recycled top gas from the shaft furnace, reheated to 925°C in an indirect fired heater, and injected into the shaft furnace. For high (above 92%) metallization a CO2 removal unit is added in the top gas recycle line in order to upgrade the quaUty of the recycled top gas and reducing gas. [Pg.429]


See other pages where Catalyst Co2 is mentioned: [Pg.671]    [Pg.650]    [Pg.171]    [Pg.313]    [Pg.91]    [Pg.485]    [Pg.116]    [Pg.615]    [Pg.657]    [Pg.146]    [Pg.320]    [Pg.35]    [Pg.10]    [Pg.671]    [Pg.650]    [Pg.171]    [Pg.313]    [Pg.91]    [Pg.485]    [Pg.116]    [Pg.615]    [Pg.657]    [Pg.146]    [Pg.320]    [Pg.35]    [Pg.10]    [Pg.104]    [Pg.209]    [Pg.238]    [Pg.729]    [Pg.219]    [Pg.327]    [Pg.88]    [Pg.182]    [Pg.280]    [Pg.385]    [Pg.405]    [Pg.406]    [Pg.579]    [Pg.583]    [Pg.81]    [Pg.174]    [Pg.185]    [Pg.386]    [Pg.287]    [Pg.419]    [Pg.58]   
See also in sourсe #XX -- [ Pg.148 ]




SEARCH



CO2 reduction catalysts

© 2024 chempedia.info