Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Clusters photoionization

Figure 12. Relative rate constants (left-hand scale, data points) as a function of cluster size for Dj chemisorption onto iron, vanadium, and niobium clusters. Activation energies, derived from cluster photoionization thresholds [Eq. (21)], are indicated by solid line and right-hand scale. See text for definition of parameters. Figure 12. Relative rate constants (left-hand scale, data points) as a function of cluster size for Dj chemisorption onto iron, vanadium, and niobium clusters. Activation energies, derived from cluster photoionization thresholds [Eq. (21)], are indicated by solid line and right-hand scale. See text for definition of parameters.
Even when facile cluster photoionization is possible in a particular system, the effect is currently not often exploited. The matrix-analyte mole ratio is generally 1000 or higher, so the laser energy is absorbed almost entirely by noncomplexed matrix. Even if relatively inefficient, matrix-only mechanisms will then generate the large majority of ions. Most analyte ions will be generated via secondary reactions with matrix primary ions. Better results can be obtained in this case if the matrix-analyte ratio is reduced and the laser intensity is increased. [Pg.163]

Herrmann A, Leutwyler S, Schumacher E and Woste L 1978 On metal-atom clusters IV. Photoionization thresholds and multiphoton ionization spectra of alkali-metal molecules Hel. Chim. Acta 61 453... [Pg.2401]

Yang S and Knickelbein M B 1990 Photoionization studies of transition metal clusters ionization potentials for Fe... [Pg.2403]

Figure 1. Schematic illustration of the laser-vaporization supersonic cluster source. Just before the peak of an intense He pulse from the nozzle (at left), a weakly focused laser pulse strikes from the rotating metal rod. The hot metal vapor sputtered from the surface is swept down the condensation channel in dense He, where cluster formation occurs through nucleation. The gas pulse expands into vacuum, with a skinned portion to serve as a collimated cluster bean. The deflection magnet is used to measure magnetic properties, while the final chaiber at right is for measurement of the cluster distribution by laser photoionization time-of-flight mass spectroscopy. Figure 1. Schematic illustration of the laser-vaporization supersonic cluster source. Just before the peak of an intense He pulse from the nozzle (at left), a weakly focused laser pulse strikes from the rotating metal rod. The hot metal vapor sputtered from the surface is swept down the condensation channel in dense He, where cluster formation occurs through nucleation. The gas pulse expands into vacuum, with a skinned portion to serve as a collimated cluster bean. The deflection magnet is used to measure magnetic properties, while the final chaiber at right is for measurement of the cluster distribution by laser photoionization time-of-flight mass spectroscopy.
Figure 4. Fe cluster ionization thresholds as a function of cluster size, as determined by photoionization yield measurements using tunable UV/VUV laser radiation. Figure 4. Fe cluster ionization thresholds as a function of cluster size, as determined by photoionization yield measurements using tunable UV/VUV laser radiation.
The cluster reactor is attached to the pulsed cluster source s condensation channel, as shown in Figure 6. (16) To it is attached a high-pressure nozzle from which a helium/hydrocarbon mixture is pulsed into the reactor at a time selected with respect to the production and arrival of the clusters. The effect of turbulent mixing with the reactant pulse perturbs the beam, but clusters and reaction products which survive the travel from the source to the photoionization regime ( 600y sec) and the photoionization process are easily detected. [Pg.120]

Knickelhein MB, Yang S, Riley SJ. 1990. Near-threshold photoionization of nickel clusters Ionization potentials for Nis to Nipo. J Chem Phys 93 94-104. [Pg.559]

Recently, similar findings133 have been made in studies of the photoionization of NO containing water clusters134 which established that the cluster reaction analogous to the last step in reaction 36 occurs for n > 4. [Pg.221]

Photoionization ti me-of-fli ght mass spectrometry is almost exclusively the method used in chemical reaction studies. The mass spectrometers, detectors and electronics are almost identical. A major distinction is the choice of ionizing frequency and intensity. For many stable molecules multi photon ionization allowed for almost unit detection efficiency with controllable fragmentation(20). For cluster systems this has been more difficult because high laser intensities generally cause extensive dissociation of neutrals and ions(21). This has forced the use of single photon ionization. This works very well for low i oni zati on potential metals ( < 7.87 eV) if the intensity is kept fairly low. In fact for most systems the ionizing laser must be attenuated. A few very small... [Pg.52]

Y. Matsuda, M. Hachiya, A. Fujii, and N. Mikami, Stimulated Raman spectroscopy combined with vacuum ultraviolet photoionization Application to jet cooled methanol clusters as a new vibrational spectroscopic method for size selected species in the gas phase. Chem. Phys. Lett. 442, 217 219 (2007). [Pg.51]

Despite many synthetic efforts no P- or As-cluster cations have been characterized in condensed phases to date, although their existence in the gas phase is well established by mass spectrometry and photoionization in combination with quantum chemical calculations (see below). Only one antimony cation is claimed in con-... [Pg.216]

It was also observed, in 1973, that the fast reduction of Cu ions by solvated electrons in liquid ammonia did not yield the metal and that, instead, molecular hydrogen was evolved [11]. These results were explained by assigning to the quasi-atomic state of the nascent metal, specific thermodynamical properties distinct from those of the bulk metal, which is stable under the same conditions. This concept implied that, as soon as formed, atoms and small clusters of a metal, even a noble metal, may exhibit much stronger reducing properties than the bulk metal, and may be spontaneously corroded by the solvent with simultaneous hydrogen evolution. It also implied that for a given metal the thermodynamics depended on the particle nuclearity (number of atoms reduced per particle), and it therefore provided a rationalized interpretation of other previous data [7,9,10]. Furthermore, experiments on the photoionization of silver atoms in solution demonstrated that their ionization potential was much lower than that of the bulk metal [12]. Moreover, it was shown that the redox potential of isolated silver atoms in water must... [Pg.579]

Matrix-isolated alkali atoms (or small clusters) also undergo easy photoionization, and the electrons released in this process may attach themselves to nearby substrates to form the corresponding radical anions. However, one drawback of alkah metal atoms or clusters is that they tend to swamp the electronic absorption spectrum of the target reactive intermediate that can only thus be detected by IR. [Pg.813]

The apparatus has been already described in Ref. [7]. The clusters are produced by laser vaporization of a sodium rod, with helium at about 5 bars as a carrier gas and a small amount of SF6. The repetition rate is 10 Hz. In this configuration, the vibrationnal temperature of the formed clusters is roughly 400 K,[10] that gives 85% of C2V geometry and 15% of C3V for a Boltzman distribution. The laser beams are focused onto the cluster beam between the first two plates of an axial Wiley Mac-Laren Time-Of-Flight mass spectrometer with a reflectron. The photoionization efficiency curve as well as the photoabsorption spectrum determined by a photodepletion experiement are displayed on Fig. 1(b) and 1(c) respectively. The ionization threshold is at 4.3 eV, close to the 4.4 eV calculated for the C3V isomer and 4.9 eV for the C2V isomer (see the Fig. 1 (b)). The conclusion arising out of the photodepletion spectrum shown on Fig 1(c) and from ab initio calculations of the excited states, [5] is that the observed... [Pg.57]

For pump-probe photoionization (PPI, Fig.l) the first laser pulse is tuned into resonance with the (vibrationless) electronic transition of the molecule, the second pulse is red-shifted in wavelength, so that the enhanced (1+1 ) photoion signal can be easily identified. When a time-of-flight mass spectrometer is used for detection the mass-selective photoion signal as a function of time delay can be recorded as the RCS spectrum of the electronically excited state, which is particularly useful for the specific investigation of molecular clusters. [Pg.73]

Figure 1. Experimental set-up for performing transient two-photon ionization spectroscopy on metal clusters. The particles were produced in a seeded beam expansion, their flux detected with a Langmuir-Taylor detector (LTD). The pump and probe laser pulses excited and ionized the beam particles. The photoions were size selectively recorded in a quadrupole mass spectrometer (QMS) and detected with a secondary electron multiplier (SEM). The signals were then recorded as a function of delay between pump and probe pulse. Figure 1. Experimental set-up for performing transient two-photon ionization spectroscopy on metal clusters. The particles were produced in a seeded beam expansion, their flux detected with a Langmuir-Taylor detector (LTD). The pump and probe laser pulses excited and ionized the beam particles. The photoions were size selectively recorded in a quadrupole mass spectrometer (QMS) and detected with a secondary electron multiplier (SEM). The signals were then recorded as a function of delay between pump and probe pulse.
The first NeNePo experiments dealt with silver clusters, Ag3, Ags, Ag7, and Ag9, particularly with the first of these. The photodetachment and photoionization were done with a single titanium-sapphire laser producing pulses of approximately 60 fs duration. Doubled in frequency, these could be tuned over a wavelength span from above 420 to below 390 nm. As with the dimer, photodetachment was a one-photon process and photoionization a two-pho-ton process. (The clusters of odd numbers of atoms could be studied this way the even-numbered clusters require at least three photons in the available energy range for photoionization). The interval between pulses could be varied from zero (simultaneous pulses) to 100 ps the two pulses were made to differ in intensity by about a factor of 2, and either could be the leading pulse. [Pg.114]


See other pages where Clusters photoionization is mentioned: [Pg.282]    [Pg.152]    [Pg.282]    [Pg.152]    [Pg.1331]    [Pg.2395]    [Pg.169]    [Pg.170]    [Pg.78]    [Pg.36]    [Pg.368]    [Pg.112]    [Pg.116]    [Pg.120]    [Pg.79]    [Pg.69]    [Pg.793]    [Pg.12]    [Pg.171]    [Pg.292]    [Pg.167]    [Pg.167]    [Pg.21]    [Pg.70]    [Pg.49]    [Pg.50]    [Pg.57]    [Pg.102]    [Pg.130]    [Pg.668]   
See also in sourсe #XX -- [ Pg.186 ]




SEARCH



Clusters photoionization potentials

Photoion

Photoionization

Photoions

© 2024 chempedia.info