Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Classical optics principles

Many classical optical sensing principles, which are well known from free space optics can be implemented in integrated optical structures, while integrated optics at its turn can act as source of new principles. Many types of integrated optical sensors have been investigated and demonstrators have been realized, mostly at universities and other research institutes. And also at... [Pg.278]

The principle of superposition, a fundamental of classical optics holds. [Pg.93]

In the case of coherent laser light, the pulses are characterized by well-defined phase relationships and slowly varying amplitudes (Haken, 1970). Such quasi-classical light pulses have spectral and temporal distributions that are also strictly related by a Fourier transformation, and are hence usually refered to as Fourier-transform-limited. They are required in the typical experiments of coherent optical spectroscopy, such as optical nutation, free induction decay, or photon echoes (Brewer, 1977). Here, the theoretical treatments generally adopt a semiclassical procedure, using a density matrix or Bloch formalism to describe the molecular system subject to a pulsed or continuous classical optical field, which generates a macroscopic sample polarization. In principle, a fully quantal description is possible if one represents the state of the field by the coherent or quasi-classical state vectors (Glauber, 1965 Freed and Villaeys, 1978). For our purpose, however. [Pg.300]

Contrary to the principles of classical optics, the theory of quantum electrodynamics asserts that photons do not necessarily travel in straight lines. To find the probability that a photon will move from point A to point B, we must sum the amplitudes of wavefunctions for all possible paths between the two points, including even round-about routes via distant galaxies and paths in which the photon splits transiently into an electron-positron pair. Although there are an infinite number of paths between any two points, destructive interferences cancel most of the contributions from all the indirect paths, leaving only small (but sometimes significant) corrections to the laws of classical optics and electrostatics. This is because small differences between the indirect routes have large effects on the... [Pg.113]

Turbidimetry and Nephelometry. In contrast to classical absorbance methods, immunoassay reactions frequently involve agglutination in which the optical scatter signal of the agglutinated particles is measured by turbidimetric or nephelometric means. The principles of light scattering as it relates to analytical methods is discussed in reference 6. [Pg.394]

In the mid-IR, routine infrared spectroscopy nowadays almost exclusively uses Fourier-transform (FT) spectrometers. This principle is a standard method in modem analytical chemistry45. Although some efforts have been made to design ultra-compact FT-IR spectrometers for use under real-world conditions, standard systems are still too bulky for many applications. A new approach is the use of micro-fabrication techniques. As an example for this technology, a miniature single-pass Fourier transform spectrometer integrated on a 10 x 5 cm optical bench has been demonstrated to be feasible. Based upon a classical Michelson interferometer design, all... [Pg.142]

Optimization pervades the fields of science, engineering, and business. In physics, many different optimal principles have been enunciated, describing natural phenomena in the fields of optics and classical mechanics. The field of statistics treats various principles termed maximum likelihood, minimum loss, and least squares, and business makes use of maximum profit, minimum cost, maximum use of resources, minimum effort, in its efforts to increase profits. A typical engineering problem can be posed as follows A process can be represented by some equations or perhaps solely by experimental data. You have a single performance criterion in mind such as minimum cost. The goal of optimization is to find the values of the variables in the process that yield the best value of the performance criterion. A trade-off usually exists between capital and operating costs. The described factors—process or model and the performance criterion—constitute the optimization problem. ... [Pg.4]

Because of the particle sizes involved, classically the optical microscope has been the instrument of choice especially for lyophobic colloids. Excellent books and manuals are available (Bradbury 1991 Cherry 1991 Schaeffer 1953) on the numerous variations of optical microscopy, and we do not go into all the details. Our purpose here is merely to point out some very elementary principles that make this method ideally suited for direct examination of colloids. We also use this introduction as a first step in pointing out modern techniques that fall under the class of microscopy but use principles (e.g., electron tunneling see Vignette 1.8) and radiation (e.g., electron or x-ray) other than those used in optical microscopy. [Pg.39]

The sizing methods involve both classical and modem instrumentations, based on a broad spectrum of physical principles. The typical measuring systems may be classified according to their operation mechanisms, which include mechanical (sieving), optical and electronic (microscopy, laser Doppler phase shift, Fraunhofer diffraction, transmission electron miscroscopy [TEM], and scanning electron microscopy [SEM]), dynamic (sedimentation), and physical and chemical (gas adsorption) principles. The methods to be introduced later are briefly summarized in Table 1.2. A more complete list of particle sizing methods is given by Svarovsky (1990). [Pg.10]

In principle, any of the photoproducts shown in Table 4 could have been prepared in enantiomerically pure form by irradiating their achiral precursors in solution to form a racemate and then separating the enantiomers by means of the classical Pasteur resolution procedure [36]. This sequence is shown in the lower half of Fig. 3. The top half of Fig. 3 depicts the steps involved in the solid-state ionic chiral auxiliary method of asymmetric synthesis. The difference between this approach and the Pasteur method is one of timing. In the ionic chiral auxiliary method, salt formation between the achiral reactant and an optically pure amine precedes the photochemical step, whereas in the Pasteur procedure, the photochemical step comes first and is followed by treatment of the racemate with an optically pure amine to form a pair of diastereomeric salts. The two methods are similar in that the crystalline state is crucial to their success. The Pasteur resolution procedure relies on fractional crystallization for the separation of the diastereomeric salts, and the ionic chiral auxiliary approach only gives good ees when the photochemistry is carried out in the crystalline state. [Pg.480]


See other pages where Classical optics principles is mentioned: [Pg.130]    [Pg.130]    [Pg.1716]    [Pg.182]    [Pg.310]    [Pg.446]    [Pg.179]    [Pg.23]    [Pg.63]    [Pg.1716]    [Pg.11]    [Pg.31]    [Pg.152]    [Pg.387]    [Pg.83]    [Pg.398]    [Pg.27]    [Pg.190]    [Pg.5]    [Pg.551]    [Pg.217]    [Pg.268]    [Pg.474]    [Pg.218]    [Pg.112]    [Pg.26]    [Pg.177]    [Pg.258]    [Pg.57]    [Pg.352]    [Pg.2376]    [Pg.267]    [Pg.37]    [Pg.189]    [Pg.50]    [Pg.3]    [Pg.489]    [Pg.130]    [Pg.517]    [Pg.407]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Classical optics

Optical principles

© 2024 chempedia.info