Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cinnamate cycloaddition

Recall from Section 7.13 that a stereospecific reaction is one in which each stereoisomer of a particular starting material yields a different stereoisomeric form of the reaction product. In the examples shown, the product from Diels-Alder cycloaddition of 1,3-butadiene to c/s-cinnamic acid is a stereoisomer of the product from trans-cinnamic acid. Each product, although chiral, is formed as a racemic mixture. [Pg.410]

In Corey and Chaykovsky s initial investigation, a cyclic ylide 79 was observed from the reaction of ethyl cinnamate with ylide 1 in addition to 32% of cyclopropane 53. In a similar fashion, an intermolecular cycloaddition between 2-acyl-3,3-bis(methylthio)acrylnitrile 80 and 1 furnished 1-methylthiabenzene 1-oxide 81. Similar cases are found in transformations of ynone 82 to 1-arylthiabenzene 1-oxide 83 and N-cyanoimidate 84 to adduct ylide 85, which was subsequently transformed to 1-methyl-lX -4-thiazin-l-oxide 86. ... [Pg.11]

Construction of the cyclopentane ring was accomplished by utilization of Trosf s Pd-mediated diastereoselective [3+2] trimethylenemethane (TMM) cycloaddition [4] on the cinnamate 5 having an Evans type chiral auxiliary [4b], The resulting diastereomeric mixture (3 1 at best) of 7a and 7b was separated by careful silica gel column chromatography (7a is less polar than 7b under normal phase). Puri-... [Pg.46]

Photocrosslinking. The second class of photopolymer chemistry that is used in some commercial products is based on the reaction of unsaturated moieties attached to an organic polymer. These photopolymer materials include the [2+2] cycloaddition of the ethylenic groups in poly(vinyl cinnamate) polymers and in the newer styryl pyridinium (10) and thiazolium (77) derivatives of poly(vinyl alcohol). The main advantage of this chemistry is that, unlike free-radical photopolymerization, they are insensitive to the presence of oxygen. This photopolymer mechanism is principally used in applications employing a washout development process (e.g. resists). [Pg.4]

Formation of mixtures of the above type, which is common with internal olefins, do not occur with many functionalized alkenes. Thus, tertiary cinnamates and cinnamides undergo cycloadditions with benzonitrile oxides to give the 5-Ph and 4-Ph regioisomers in a 25-30 75-70 ratio. This result is in contrast to that obtained when methyl cinnamate was used as the dipolarophile (177). 1,3-Dipolar cycloaddition of nitrile oxides to ethyl o -hydroxycinnamate proceeds regiose-lectively to afford the corresponding ethyl fra s-3-aryl-4,5-dihydro-5-(2-hydro-xyphenyl)-4-isoxazolecarboxylates 36 (178). Reaction of 4-[( )-(2-ethoxycarbo-nylvinyl)] coumarin with acetonitrile oxide gives 37 (R = Me) and 38 in 73% and 3% yields, respectively, while reaction of the same dipolarophile with 4-methoxy-benzonitrile oxide affords only 37 (R = 4-MeOCr>H4) (85%) (179). [Pg.23]

Baker s yeast catalyzed the regioselective cycloaddition of stable aromatic nitrile oxides ArCNO [Ar = 2,6-C12C6H3, 2,4,6-Me3C6H2, 2,4,6-(MeO)3C6H2] to ethyl cinnamate, ethyl 3-(p-tolyl)acrylate, and tert-butyl cinnamates (218). Reactions of dichloro- and trimethoxybenzonitrile oxides with all three esters proceeded regio- and stereoselectively to form exclusively alkyl tran.v -3,5-diary 1 -... [Pg.27]

Recently, a series of cycloadducts possessing unusual flipping modes have been isolated from the 1,3-dipolar cycloaddition of 3,4,5,6-tetrahydropyridine IV -oxide to piperidides of cinnamic acid and para-substituted cinnamic acids (791). [Pg.354]

The reaction types which includes 2 + 2 cycloaddition and carried out by photochemical means have also great synthetic potentiality. The photodimerisation of cinnamic acids were among the earliest photochemical reactions to be studied. These compounds give good yield of dimers when irradiated in the crystalline state. In solution, cis-trans isomerisation is the dominent reaction. [Pg.40]

The transition metal-catalyzed reaction of diazoalkanes with acceptor-substituted alkenes is far more intricate than reaction with simple alkenes. With acceptor-substituted alkenes the diazoalkane can undergo (transition metal-catalyzed) 1,3-dipolar cycloaddition to the olefin [651-654]. The resulting 3//-pyrazolines can either be stable or can isomerize to l//-pyrazolines. 3//-Pyrazolines can also eliminate nitrogen and collapse to cyclopropanes, even at low temperatures. Despite these potential side-reactions, several examples of catalyzed cyclopropanations of acceptor-substituted alkenes with diazoalkanes have been reported [648,655]. Substituted 2-cyclohexenones or cinnamates [642,656] have been cyclopropanated in excellent yields by treatment with diazomethane/palladium(II) acetate. Maleates, fumarates, or acrylates [642,657], on the other hand, cannot, however, be cyclopropanated under these conditions. [Pg.115]

A study of the regioselectivity of the 1,3-dipolar cycloaddition of aliphatic nitrile oxides with cinnamic acid esters has been published. AMI MO studies on the gas-phase 1,3-dipolar cycloaddition of 1,2,4-triazepine and formonitrile oxide show that the mechanism leading to the most stable adduct is concerted. An ab initio study of the regiochemistry of 1,3-dipolar cycloadditions of diazomethane and formonitrile oxide with ethene, propene, and methyl vinyl ether has been presented. The 1,3-dipolar cycloaddition of mesitonitrile oxide with 4,7-phenanthroline yields both mono-and bis-adducts. Alkynyl(phenyl)iodonium triflates undergo 2 - - 3-cycloaddition with ethyl diazoacetate, Ai-f-butyl-a-phenyl nitrone and f-butyl nitrile oxide to produce substituted pyrroles, dihydroisoxazoles, and isoxazoles respectively." 2/3-Vinyl-franwoctahydro-l,3-benzoxazine (43) undergoes 1,3-dipolar cycloaddition with nitrile oxides with high diastereoselectivity (90% de) (Scheme IS)." " ... [Pg.460]

The 1,3-dipolar cycloadditions of benzonitrile oxides with tertiary cinnamides yield the 5-phenyl and 4-phenyl regioisomers in a reversal of the expected regioselectiv-ities shown with methyl cinnamate. Calculations have shown that steric factors are responsible for this reversal of regioselectivity." The 1,3-dipolar cycloadditions of benzonitrile oxide with electron-rich and electron-poor dipolarophiles are accelerated by sodium dodecyl sulfate micelles. Phenyl nitrile ylides react with electron-deficient alkenes to produce five-membered -heterocycles where measured rate constants are between 4 x 10 and 7 x 10 lmoP ... [Pg.461]

Also, in the form of N-(2-pyridylcarbonyl)proline Pro undergoes 1,3-dipolar cycloaddition with 2-chloroacrylonitrile to give two tetracyclic products and 61b in 5% yield (85TL5447). When Pro-OMe was heated with methyl cinnamate and benzaldehyde in toluene for several hours, two iso-... [Pg.39]

On the other hand, reactions of nitrile oxides with 1,2-disubstituted olefins are slower and regioselectivity usually was not so high. For example, benzonitrile oxides, obtained from the corresponding chlorooximes 167, undergo 1,3-dipolar cycloaddition reaction with methyl cinnamate to produce the 5-phenyl 168 and 4-phenyl 169 regioisomers in approximately an 80 20 ratio °. However, use of A,iV-diethylcinnamamide as the dipolarophile... [Pg.256]

The meso-ionic l,3-dithiol-4-ones (134) participate - in 1,3-dipolar cycloaddition reactions giving adducts of the general type 136. They show a remarkable degree of reactivity toward simple alkenes including tetramethylethylene, cyclopentene, norbomene, and norbor-nadiene as well as toward the more reactive 1,3-dipolarophilic olefins dimethyl maleate, dimethyl fumarate, methyl cinnamate, diben-zoylethylene, A -phenylmaleimide, and acenaphthylene. Alkynes such as dimethyl acetylenedicarboxylate also add to meso-ionic 1,3-dithiol-4-ones (134), but the intermediate cycloadducts are not isolable they eliminate carbonyl sulfide and yield thiophenes (137) directly. - ... [Pg.31]

The meso-ionic l,3>2-oxathiazol-5-ones (169) show an interesting range of reactions with nucleophiles including ammonia, primary amines, and aqueous alkali. They also react with l,3-dipolarophiles, including dimethyl acetylenedicarboxylate and methyl propiolate, yielding isothiazoles (171) and carbon dioxide. 1,3-Dipolar cycloaddition reactions with alkenes such as styrene, dimethyl maleate, and methyl cinnamate also lead to isothiazoles (171) directly. BicycUc intermediates (cf. 136) were not isolable these cycloaddition reactions with alkenes giving isothiazoles involve an additional dehydrogenation step. [Pg.38]

Diazoacetaldehyde dimethylacetal (12) has been used as a substitute for diazoacetaldehyde in 1,3-dipolar cycloadditions with l-benzopyran-2(//)-ones (40), styrene, methyl methacrylate, 1-cyanocyclopentene, and methyl cyclohexene-1-carboxylate (41). The resulting A -pyrazolines were readily transformed in two steps into cyclopropanecarbaldehydes [e.g., 13 —> 14 (Scheme 8.4)]. In a similar manner, 3-phenylcyclopropane-l,2-dicarbaldehyde was obtained from the reaction of 12 with dimethyleneketal of cinnamic aldehyde. [Pg.545]

Cycloaddition using the unusually functionalized 2-diazo-1,1,1-trifluoro-3-nitropropane (15) could be achieved with methyl acrylate, methacrylic acid chloride, and esters (Scheme 8.5), but not with the 1,2-disubstituted C=C bonds of p-nitrostyrene, ethyl cinnamate, and 4-methyl-3-penten-2-one (42). In these cycloadditions, 15 is considerably less reactive than 2-diazo-1,1,1-trifluoroethane... [Pg.545]

A great number of olefinic compounds are known to photodimerize in the crystalline state (1,2). Formation of a-truxillic and / -truxinic acids from two types of cinnamic acid crystals was interpreted by Bernstein and Quimby in 1943 to be a crystal lattice controlled reaction (5). In 1964 their hypothesis on cinnamic acid crystals was visualized by Schmidt and co-workers, who correlated the crystal structure of several olefin derivatives with photoreactivity and configuration of the products (4). In these olefinic crystals the potentially reactive double bonds are oriented in parallel to each other and are separated by approximately 4 A, favorable for [2+2] cycloaddition with minimal atomic and molecular motion. In general, the environment of olefinic double bonds in these crystals conforms to one of three principal types (a) the -type crystal, in which the double bonds of neighboring molecules make contact at a distance of -3.7 A across a center of symmetry to give a centrosymmetric dimer (1-dimer) (b) the / -type crystal, characterized by a lattice having one axial length of... [Pg.255]

Although actual diffusion in solids is not significant within the lifetimes of excited molecules, bimolecular reactions can take place when molecules are kept in close contact in a polymer or crystal lattice. In some crystals the molecules are ideally spaced for cycloaddition, as in the example of cinnamic acid (Figure 4.80). The geometrical requirements are quite stringent and the reaction cannot proceed if the interplane separation of the molecules exceeds about 4A. [Pg.153]

Photo-crosslinking and the reverse process of photodissociation of pre-existing crosslinks relies on a cycloaddition reaction (and on the reverse dissociation of the cyclic adduct). For example, derivatives of vinyl cinnamic acid can form crosslinks which are dissociated by irradiation with short wavelength light (e.g. 254 nm produced by low-pressure mercury arcs). In this process the polymer chains become separated, and the polymer itself is then soluble in organic solvents. [Pg.198]

Lamottke was the first to execute this variant. He found that a solution of 23, saturated with acetylene gas and exposed to an excess of CpCo(C2H4)2, formed the desired target 40 in 43% yield (Scheme 16). This promising result was the starting point for the experimental efforts of one of the authors. While the process was reproducible, attempts to scale it up beyond sub-millimolar quantities, necessary for a fairly early and critically important synthetic step, led to significant decreases in yield (17-24%). The difficulty appeared to be formation of cinnamic amide 41, isolated in 50-60% yields as a mixture of cis and trans isomers.39 Minimization of this unwanted product required consideration of the [2 + 2 +2]cycloaddition mechanism. [Pg.383]

Since the work of Kelly, there have been very few reports that focus upon applications of synthetic linear templates to chemical synthesis. Most recent studies have focused on systems that self-replicate [13]. A synthetic system based on a barbituric acid has been shown to organize two cinnamates in apolar media, by way of N-H N and N-H O forces, for a regiocontrolled [2 + 2] ultraviolet-(UV) induced cycloaddition reaction (Figure 3b) [16]. Similar to the system of Kelly, a mixture of products was attributed to free rotation about C-C bonds of the reactants. [Pg.188]

With this procedure, N-H pyrrolidines can be synthesized directly. An important observation is that the conservation of the geometry of the dipolarophile, such as methyl cinnamate, leads to frans-Ph/COOMe pyrrolidines. This feature appears to be a general characteristic of these cycloadditions. [Pg.305]

Fig. 8. Photodimerization in o-ethoxy cinnamic acid Two centrosymmetric molecules of the a-form before (full lines) and after (dashed lines) the reaction. Hydrogen atoms other than the hydroxyl are omitted for the sake of clarity. The cinnamoyl double bonds are spaced at —4.3 A and following the cycloaddition, a new pair of bonds is formed which are slightly longer (—1.57 A) than typical C-C bonds. The inset shows the deformation density (at 0.075 ek 3) in the plane of the cyclobutane ring in the a-dimer. Fig. 8. Photodimerization in o-ethoxy cinnamic acid Two centrosymmetric molecules of the a-form before (full lines) and after (dashed lines) the reaction. Hydrogen atoms other than the hydroxyl are omitted for the sake of clarity. The cinnamoyl double bonds are spaced at —4.3 A and following the cycloaddition, a new pair of bonds is formed which are slightly longer (—1.57 A) than typical C-C bonds. The inset shows the deformation density (at 0.075 ek 3) in the plane of the cyclobutane ring in the a-dimer.

See other pages where Cinnamate cycloaddition is mentioned: [Pg.219]    [Pg.147]    [Pg.27]    [Pg.87]    [Pg.343]    [Pg.127]    [Pg.514]    [Pg.931]    [Pg.964]    [Pg.966]    [Pg.399]    [Pg.395]    [Pg.302]    [Pg.244]    [Pg.190]    [Pg.669]    [Pg.220]    [Pg.142]    [Pg.828]    [Pg.221]    [Pg.83]   
See also in sourсe #XX -- [ Pg.298 ]




SEARCH



Cinnamate

Cinnamates

Cinnamic 4-

Cinnamics

© 2024 chempedia.info