Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystal, cinnamic acid

CgHgO, PhCH = CHCOiH. Colourless crystals. Decarboxylales on prolonged heating. Oxidized by nitric acid to benzoic acid. Ordinary cinnamic acid is the trans-isomer, m.p. 135-136 C on irradiation with u.v. light it can be isomerized to the less stable cis-isomer, m.p. 42" C. [Pg.100]

Eastman Organic Chemicals cinnamaldehyde gave satisfactory results. If colorless crystals are present in the neck of the bottle or on the walls above the liquid, the cinnamaldehyde is seriously contaminated with cinnamic acid and should be distilled before use. A small amount of cinnamic acid apparently does not affect the yield of phenylcyclopropane. [Pg.99]

To date, the crystal structures of more than 200 mesogenic compounds are known. In this review, we wish to present a general overview of the crystal structures of mesogenic compounds up to the end of 1997. Unfortunately, it is not possible to consider the crystal structure determinations of carbohydrate liquid crystals [13, 14], metallomesogens [15-18], phasmid and biforked mesogens [19-22], perfluorinated mesogenic compounds [23-27], benzoic acids [6, 28-31], cinnamic acids [7, 32, 33], dicarboxylic acids [34, 35], cinnamate compounds [8, 36-40], and discotic liquid crystals [41-43] due to the lack of space. [Pg.141]

Figure 6 and 7. Surface grafting of polyethylene (PE) and polypropylene (PP) films with acrylic acid (AA), methacrylic acid (MAA), crotonic acid (CA), tiglic acid (TA), 3-methylcrotonic acid (3-MCA) and a-methyl cinnamic acid (a-MCA), measured by absorption of visible light after grafting for 2 min. with vapor phase method and dipping in aqueous solution of crystal violet. [Pg.178]

Topochemical control of solid state dimerizations is well illustrated by the example of the frows-cinnamic acids.(112) The a form of ftmv-cinnamic acid is known to have a molecular separation of 3.6 A between double bonds and the molecules are arranged in a head-to-tail fashion. -Cinnamic acid has approximately the same intermolecular distance in the crystal but the molecules are arranged in a parallel head-to-head manner. a-Truxillic (101) and /3-truxinic (102) acids are the products expected and observed ... [Pg.245]

A single-to-single crystal phase transition was found to take place at 333 K in a new polymorph of ort/zo-ethoxy-trans-cinnamic acid [77]. In this study, the structures of the title compound obtained at two temperatures above the transition point were determined in addition to the structures of the stabilized forms existing at lower temperatures. It was found that the phase transition involved a cooperative conformational transformation coupled with a shift in layers of the constituent molecules. [Pg.273]

The structural changes that accompanied the [2 + 2] photodimerization of the metastable a -polymorph of ort/zo-ethoxy-tranx-cinnamic acid have been studied [93]. In this study, the photochemical reaction was carried out at 293 K, and observed in situ by single-crystal X-ray diffraction. In the structure of the title compound, the three molecules in the asymmetric unit are arranged to form two potential reaction sites, but only one of these was found to be photoreactive. Since only two out of three molecules in the asymmetric unit take place in the photodimerization reaction, the crystal of the final product contains an ordered arrangement of the photodimer and the unreacted monomer. [Pg.276]

The driving force for growth of the crystal in the b direction is the energy released by formation of the NH O bonds of the ribbon motif. E-Cinnamic acid in the stable synplanar conformation 2a can replace a E-cinnamide molecule at the end of the ribbon however, at the site of the additive, the attractive NH O bond (- 6 kcal/mol) is replaced by repulsion between the adjacent oxygen lone-pair electrons of the bound additive molecule and of the oncoming cinnamide molecule (1-2 kcal/mol), which leads to an overall loss in energy of 7-8 kcal/mol at the site of the additive (Scheme 6 on page 16). [Pg.14]

Figure 4. Measured habits of crystals of -cinnamide (a) pure (b)- d) grown in the presence of (b) cinnamic acid, (c) p-chloro- or A-methyl-E-cinnamide, (d) a- or P-chloro-Z-cinnamide. Figure 4. Measured habits of crystals of -cinnamide (a) pure (b)- d) grown in the presence of (b) cinnamic acid, (c) p-chloro- or A-methyl-E-cinnamide, (d) a- or P-chloro-Z-cinnamide.
As predicted, the presence of cinnamic acid in solution caused cinnamide to crystallize as flat prisms with prominent 011 faces (Figure 4b). The crystal morphology was modified along c by the use of amide additives that contain a bulky Cl substituent at the a- or P-carbons of cinnamide. When replacing a substrate molecule, these additive molecules interfere with the deposition of the next Oil layers (Figure 3), yielding 011 platelike crystals (Figure 4d). [Pg.15]

An asymmetric photosynthesis may be performed inside a crystal of -cinnamide grown in the presence of E-cinnamic acid and considered in terms of the analysis presented before on the reduction of crystal symmetry (Section IV-J). We envisage the reaction as follows The amide molecules are interlinked by NH O hydrogen bonds along the b axis to form a ribbon motif. Ribbons that are related to one another across a center of inversion are enantiomeric and are labeled / and d (or / and d ) (Figure 39). Molecules of -cinnamic acid will be occluded into the d ribbon preferentially from the +b side of the crystal and into the / ribbon from the — b side. It is well documented that E-cinnamide photodimerizes in the solid state to yield the centrosymmetric dimer tnixillamide. Such a reaction takes place between close-packed amide molecules of two enantiomeric ribbons, d and lord and / (95). It has also been established that solid solutions yield the mixed dimers (Ila) and (lib) (Figure 39) (96). Therefore, we expect preferential formation of the chiral dimer 11a at the + b end of the crystal and of the enantiomeric dimer lib at the —b end of the crystal. Preliminary experimental results are in accordance with this model (97). [Pg.65]

Figure 39. Four ribbons of cinnamide (phenyl = ) molecules. Ribbons / and l, d and d are related by translation. Ribbons d and /, d and l make plane-to-plane contacts of 4 A across centers of symmetry. Ribbon / is above d, and ribbon d is below l. Cinnamic acid molecules (filled circles) have been introduced into the structure in the allowed sites, assuming the crystal grows from the center in the two opposite directions +b and —b. The dimers obtained at the two opposite sides are enantiomeric. Figure 39. Four ribbons of cinnamide (phenyl = <t>) molecules. Ribbons / and l, d and d are related by translation. Ribbons d and /, d and l make plane-to-plane contacts of 4 A across centers of symmetry. Ribbon / is above d, and ribbon d is below l. Cinnamic acid molecules (filled circles) have been introduced into the structure in the allowed sites, assuming the crystal grows from the center in the two opposite directions +b and —b. The dimers obtained at the two opposite sides are enantiomeric.
Photodimerization of cinnamic acids and its derivatives generally proceeds with high efficiency in the crystal (176), but very inefficiently in fluid phases (177). This low efficiency in the latter phases is apparently due to the rapid deactivation of excited monomers in such phases. However, in systems in which pairs of molecules are constrained so that potentially reactive double bonds are close to one another, the reaction may proceed in reasonable yield even in fluid and disordered states. The major practical application has been for production of photoresists, that is, insoluble photoformed polymers used for image-transfer systems (printed circuits, lithography, etc.) (178). Another application, of more interest here, is the use that has been made of mono- and dicinnamates for asymmetric synthesis (179), in studies of molecular association (180), and in the mapping of the geometry of complex molecules in fluid phases (181). In all of these it is tacitly assumed that there is quasi-topochemical control in other words, that the stereochemistry of the cyclobutane dimer is related to the prereaction geometry of the monomers in the same way as for the solid-state processes. [Pg.179]

The sensitivity to temperature is reminiscent of that seen in Ron s study (188) of o-methoxy-m-cinnamic acid, 129. When crystals of this substance are exposed to light at low temperatures (< — 80°C), there occurs a gradual isomerization of the molecules to the trans form, 130, with formation of a little of the (2 + 2) photodimer, 131, of the latter. If this irradiated material is warmed in the dark to + 60°C, recooled, and reirradiated for a short while, there is a jump in the amount of dimer. This behavior is interpreted as follows ... [Pg.186]

The examples of ex situ steady-state X-ray photodiffraction utihzed to follow the photodimerizations of olefin bonds in a single-crystal-to-single-crystal (or nearly so) manner are ubiquitous in the chemical literature. The interest of sohd-state chemists in this reaction dates back to the work of Cohen and Schmidt [30, 31], and it has become much of a guinea pig in organic solid-state photochemistry. In 1993, Enkelmann and collaborators published two seminal papers in the Journal of the American Chemical Society [32] and in Angewandte Chemie [33], where they presented a series of structures of a-tra s-cinnamic acid crystals reacted to various extents. These reports laid the way for a plethora of later studies on the olefin photodimerization reaction. The convenience of the high conversion and the simple mechanism, combined with the relatively small structural perturbation that it requires, has turned this reaction into a very useful tool to probe intermolecular... [Pg.121]

Enkehnann V, Wegner G (1993) Single-crystal-to-single-crystal photodimerization of cinnamic acid. J Am Chem Soc 115 10390-10391... [Pg.128]

Fig. 6 Results from Rietveld refinement of the disordered crystal structure of the P polymorph of p-formyl-tranj--cinnamic acid. The disorder concerns two orientations of the formyl group as shown in (a). The crystal structure in (b) shows only the disorder component of higher occupancy. The results from Rietveld refinement shown at the bottom are for (c) an ordered model comprising only the major orientation of the formyl group, and (d) the final disordered model (right side). Apart from the description of the order/disorder of the formyl group, all other aspects of these refinement calculations were the same. A slight improvement in the quality of the Rietveld fit for the disordered model is evident... Fig. 6 Results from Rietveld refinement of the disordered crystal structure of the P polymorph of p-formyl-tranj--cinnamic acid. The disorder concerns two orientations of the formyl group as shown in (a). The crystal structure in (b) shows only the disorder component of higher occupancy. The results from Rietveld refinement shown at the bottom are for (c) an ordered model comprising only the major orientation of the formyl group, and (d) the final disordered model (right side). Apart from the description of the order/disorder of the formyl group, all other aspects of these refinement calculations were the same. A slight improvement in the quality of the Rietveld fit for the disordered model is evident...
Hydrocinnamic Acid or 3-Phenylpropionic Acid, C6HsCH2CH2COOH mw 150.17, crystals, mp 46° si sol in w sol in ale or eth. Prepd by the reduction of cinnamic acid with Na-amalgam... [Pg.213]

Steam distillation of the balsam gives styrax oil, a light yellow liquid that contains a relatively large amount of cinnamic acid, which partially crystallizes [783]. Styrax oil has a sweet-balsamic odor with a styrene-like top note. It is used in perfumery in flowery compositions, [8024-01-9], [94891-27-7], [94891-28-8]. [Pg.220]

In the absence of defects, the reactivity of organic solids is mainly determined by molecular packing. Reactions in which the crystal structure holds sway over intrinsic molecular reactivity are said to be topochemically controlled (Thomas, 1974). A classic example of a topochemically controlled organic reaction in the solid state is the photodimerization of rrans-cinnamic acids studied by Schmidt et al. (see Ginsburg,... [Pg.505]


See other pages where Crystal, cinnamic acid is mentioned: [Pg.237]    [Pg.712]    [Pg.784]    [Pg.171]    [Pg.118]    [Pg.712]    [Pg.784]    [Pg.305]    [Pg.216]    [Pg.375]    [Pg.114]    [Pg.132]    [Pg.452]    [Pg.172]    [Pg.327]    [Pg.825]    [Pg.212]    [Pg.83]    [Pg.120]    [Pg.266]    [Pg.144]    [Pg.151]    [Pg.197]    [Pg.501]    [Pg.505]    [Pg.506]    [Pg.507]    [Pg.515]   
See also in sourсe #XX -- [ Pg.467 ]

See also in sourсe #XX -- [ Pg.467 ]




SEARCH



Acids cinnamic acid

Cinnamate

Cinnamates

Cinnamic 4-

Cinnamic acid

Cinnamic acid/cinnamate

Cinnamics

© 2024 chempedia.info