Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chrysene-5,6-oxide

The EH-catalyzed hydration of the enantiomers of the K-region epoxides of BaA, CR, and BcPh allows informative comparisons to be made [92 - 94], With four among the six substrates, nucleophilic attack is selective for the oxirane C-atom with (5)-configuration (Fig. 10.12). This is, for example, true for the two enantiomers of chrysene 5,6-oxide. Looking at the data in another way, it is also apparent that, irrespective of the enantiomer, nucleophilic attack occurs preferentially at C(5) for benz[a]anthracene 5,6-oxide, but at C(6) for benzo[c]phenanthrene 5,6-oxide. In other words, the regio- and... [Pg.628]

CHROMIUM TRIOXIDE-PYRIDINE COMPLEX, preparation in situ, 55, 84 Chrysene, 58,15, 16 fzans-Cinnamaldehyde, 57, 85 Cinnamaldehyde dimethylacetal, 57, 84 Cinnamyl alcohol, 56,105 58, 9 2-Cinnamylthio-2-thiazoline, 56, 82 Citric acid, 58,43 Citronellal, 58, 107, 112 Cleavage of methyl ethers with iodotri-methylsilane, 59, 35 Cobalt(II) acetylacetonate, 57, 13 Conjugate addition of aryl aldehydes, 59, 53 Copper (I) bromide, 58, 52, 54, 56 59,123 COPPER CATALYZED ARYLATION OF /3-DlCARBONYL COMPOUNDS, 58, 52 Copper (I) chloride, 57, 34 Copper (II) chloride, 56, 10 Copper(I) iodide, 55, 105, 123, 124 Copper(I) oxide, 59, 206 Copper(ll) oxide, 56, 10 Copper salts of carboxylic acids, 59, 127 Copper(l) thiophenoxide, 55, 123 59, 210 Copper(l) trifluoromethanesulfonate, 59, 202... [Pg.114]

Hemoglobin is another heme-containing protein, which has been shown to be active towards PAH, oxidation in presence of peroxide [420], This protein was also modified via PEG and methyl esterification to obtain a more hydrophobic protein with altered activity and substrate specificity. The modified protein had four times the catalytic efficiency than that of the unmodified protein for pyrene oxidation. Several PAHs were also oxidized including acenaphthene, anthracene, azulene, benzo(a)pyrene, fluoranthene, fluorene, and phenanthrene however, no reaction was observed with chrysene and biphenyl. Modification of hemoglobin with p-nitrophenol and p-aminophenol has also been reported [425], The modification was reported to enhance the substrate affinity up to 30 times. Additionally, the solvent concentration at which the enzyme showed maximum activity was also higher. Both the effects were attributed to the increase in hydrophobicity of the active site. [Pg.197]

Methods for the synthesis of the biologically active dihydrodiol and diol epoxide metabolites of both carcinogenic and noncarcinogenic polycyclic aromatic hydrocarbons are reviewed. Four general synthetic routes to the trans-dihydrodiol precursors of the bay region anti and syn diol epoxide derivatives have been developed. Syntheses of the oxidized metabolites of the following hydrocarbons via these methods are described benzo(a)pyrene, benz(a)anthracene, benzo-(e)pyrene, dibenz(a,h)anthracene, triphenylene, phen-anthrene, anthracene, chrysene, benzo(c)phenanthrene, dibenzo(a,i)pyrene, dibenzo(a,h)pyrene, 7-methyl-benz(a)anthracene, 7,12-dimethylbenz(a)anthracene, 3-methylcholanthrene, 5-methylchrysene, fluoranthene, benzo(b)fluoranthene, benzo(j)fluoranthene, benzo(k)-fluoranthene, and dibenzo(a,e)fluoranthene. [Pg.41]

An alternative new synthetic approach to chrysene 1,2-dihydro-diol based on Method IV has recently been developed (60). This method (Figure 12) entails synthesis of 2-chrysenol via alkylation of 1-1ithio-2,5-dimethoxy-1,4-cyclohexadiene with 2-(1-naphthyl) e-thyl bromide followed by mild acid treatment to ge nerate the diketone 12. Acid-catalyzed cyclization of 12 gave the unsaturated tetracyclic ketone 13 which was transformed to 2-chrysenol via dehydrogenation of its enol acetate with o-chloranil followed by hydrolysis. Oxidation of 2-chrysenol with Fremy s salt gave chrysene... [Pg.52]

Nucleophilic Trapping of Radical Cations. To investigate some of the properties of Mh radical cations these intermediates have been generated in two one-electron oxidant systems. The first contains iodine as oxidant and pyridine as nucleophile and solvent (8-10), while the second contains Mn(0Ac) in acetic acid (10,11). Studies with a number of PAH indicate that the formation of pyridinium-PAH or acetoxy-PAH by one-electron oxidation with Mn(0Ac)3 or iodine, respectively, is related to the ionization potential (IP) of the PAH. For PAH with relatively high IP, such as phenanthrene, chrysene, 5-methyl chrysene and dibenz[a,h]anthracene, no reaction occurs with these two oxidant systems. Another important factor influencing the specific reactivity of PAH radical cations with nucleophiles is localization of the positive charge at one or a few carbon atoms in the radical cation. [Pg.294]

These findings indicate that PGH synthase in the presence of arachidonate can catalyze the terminal activation step in BP carcinogenesis and that the reaction may be general for dihydrodiol metabolites of polycyclic hydrocarbons. Guthrie et. al. have shown that PGH synthase catalyzes the activation of chrysene and benzanthracene dihydrodiols to potent mutagens (33). As in the case with BP, only the dihydrodiol that is a precursor to bay region diol epoxides is activated. We have recently shown that 3,4-dihydroxy-3,4-dihydro-benzo(a)anthracene is oxidized by PGH synthase to tetrahydrotetraols derived from the anti-diol epoxide (Equation 4) (34). [Pg.316]

Nitro polycyclic aromatic hydrocarbons are environmental contaminants which have been detected in airborne particulates, coal fly ash, diesel emission and carbon black photocopier toners. These compounds are metabolized Tn vitro to genotoxic agents through ring oxidation and/or nitroreduction. The details of these metabolic pathways are considered using 4-nitrobiphenyl, 1- and 2-nitronaphthalene, 5-nitro-acenaphthene, 7-nitrobenz[a]anthracene, 6-nitro-chrysene, 1-nitropyrene, 1,3-, 1,6- and 1,8-dinitro-pyrene, and 1-, 3- and 6-nitrobenzo[a] pyrene as examples ... [Pg.374]

S. Yamaguchi and T.M. Swager, Oxidative cyclization of bis(biaryl)acetylenes synthesis and photophysics of dibcnzo, /j]chrysene-based fluorescent polymers, J. Am. Chem. Soc., 123 12087-12088, 2001. [Pg.289]

Preannihilative electrochemical oxidation of the phenanthrene anion has given a green emission13,64 spectrally nearly identical to the previously reported room-temperature phenanthrene phosphorescence which is a single broad peak.71 Chemical oxidation of the chrysene anion with Wurster s blue perchlorate produced an emission containing three bands at 19,800, 18,600, and 17,400 cm"1 which seem to correspond to the known phosphorescence bands of chrysene (19,500,18,500, and 16,600 cm-1). Chemical oxidation of the radical anion of N-methylcarbazole has possibly led to phosphorescent emission from this triarylamine.7... [Pg.445]

Kinetic data on the oxepin-benzene oxide equilibration have been obtained from the temperature-dependent NMR studies. Low values were observed for the enthalpy of isomerization of oxepin (7.1 kJ mol-1) and 2-methyloxepin (1.7 kJ mol-1) to the corresponding benzene oxides (67AG(E)385). The relatively small increase in entropy associated with oxepin formation (5-11 J K 1 mol-1) is as anticipated for a boat conformation in a rapid state of ring inversion. Thermal racemization studies of chrysene 1,2- and 3,4-oxides have allowed accurate thermodynamic parameters for the oxepin-arene oxide equilibration process in the PAH series to be obtained (81CC838). The results obtained from racemization of the 1,2- (Ea 103.7 kJ mol-1, AS 3.7 JK-1 mol-1 and 3,4- (Ea 105.3 kJmoF1, AS 0.7 J K"1 mol ) arene oxides of chrysene are as anticipated for the intermediacy of the oxepins (31) and (32) respectively. [Pg.555]

Epoxidation of aromatic hydrocarbons is an important method for the preparation of arene oxides. m-Chloroperbenzoic acid (MCPBA) is used in a two-phase system that involves treating the hydrocarbon with a large excess ( 10-fold) of MCPBA in methylene chloride-aqueous sodium bicarbonate at room temperature. The yields are moderate (10-60%). Because the arene oxides are sensitive to acids, the presence of sodium bicarbonate buffer is necessary. A number of K-region (see Section VII for a definition) epoxides like phenanthrene 9,10-oxide (1, 59%), 9,10-dimethylphenanthrene 9,10-oxide (2,40%), 9-phenylphenanthrene 9,10-epoxide (3,50%), pyrene 4,5-oxide (4, 14%), and chrysene 4,5-oxide (5,9%) have been prepared by this method.9... [Pg.69]

The hydrogenation of chrysene over a 10% Pd-C catalyst at room temperature and 0.31 MPa H2 afforded 5,6-dihydrochrysene, while over platinum oxide 1,2,3,4-tetra-hydrochrysene was formed as the major product along with several minor products. 1,2,3,4,5,6-Hexahydrochrysene was obtained in 42% yield in the hydrogenation over a mixed Pd-C/platinum oxide under similar conditions (Scheme 11.25).270... [Pg.483]

Scheme 11.25 Hydrogenation of chrysene over Pd-C, Pt oxide, and Pd-C/Pt oxide. Scheme 11.25 Hydrogenation of chrysene over Pd-C, Pt oxide, and Pd-C/Pt oxide.
The photo oxidation of several PAHs on aqueous clay suspensions (Ca montmorillonite, laponite, Na montmorillonite, kaolin and Kga-lb, a natural kaolinite from the Clay Mineral Society, USA) was reported [64], Using chrysene as a model compound, it was found that oxidation rates increased with respect to aqueous solution when Ca montmorillonite, laponite or Na... [Pg.67]

Bernstein et al. have used IR spectroscopy and mass spectrometry to study the products formed from photochemical transformation of naphthalene, anthracene, chrysene, phenanthrene, pyrene, tetracene, pentacene, perylene, benzo(e)pyrene, benzo(ghi)perylene, and coronene in water ices using ultraviolet radiation under astrophysical conditions [27]. The results of their investigation have revealed that peripheral carbon atoms can be oxidized to produce aromatic alcohols, ketones, ethers (when bay region is present,... [Pg.198]

The nineteenth century also produced reagents for the one-electron oxidation of suitable substrates. For example, sulfuric acid was employed for many years as an analytical reagent because of some color reactions. Thus, Laurent treated benzimid , C28H10O2+HAz, a residue from the oil of bitter almonds (ben-zaldehyde) and observed an indigo blue solution [34]. On the other hand, the blue solution observed by Liebermann upon treatment of chrysene with sulfuric acid can be attributed to the chrysene radical cation [43]. [Pg.8]


See other pages where Chrysene-5,6-oxide is mentioned: [Pg.86]    [Pg.219]    [Pg.219]    [Pg.268]    [Pg.296]    [Pg.660]    [Pg.56]    [Pg.54]    [Pg.583]    [Pg.4]    [Pg.31]    [Pg.58]    [Pg.205]    [Pg.306]    [Pg.291]    [Pg.23]    [Pg.511]    [Pg.554]    [Pg.86]    [Pg.15]    [Pg.15]    [Pg.181]    [Pg.14]    [Pg.15]    [Pg.130]    [Pg.554]    [Pg.583]    [Pg.103]    [Pg.238]    [Pg.569]    [Pg.219]    [Pg.233]    [Pg.197]    [Pg.3]   
See also in sourсe #XX -- [ Pg.611 ]




SEARCH



Chrysen

Chrysenes

© 2024 chempedia.info