Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chrysene 5-methyl

Nucleophilic Trapping of Radical Cations. To investigate some of the properties of Mh radical cations these intermediates have been generated in two one-electron oxidant systems. The first contains iodine as oxidant and pyridine as nucleophile and solvent (8-10), while the second contains Mn(0Ac) in acetic acid (10,11). Studies with a number of PAH indicate that the formation of pyridinium-PAH or acetoxy-PAH by one-electron oxidation with Mn(0Ac)3 or iodine, respectively, is related to the ionization potential (IP) of the PAH. For PAH with relatively high IP, such as phenanthrene, chrysene, 5-methyl chrysene and dibenz[a,h]anthracene, no reaction occurs with these two oxidant systems. Another important factor influencing the specific reactivity of PAH radical cations with nucleophiles is localization of the positive charge at one or a few carbon atoms in the radical cation. [Pg.294]

The carcinogenicity of PAH with relativelyTigh IP, such as benzo[c]phenanthrene, benz[a]anthracene, chrysene, 5-methyl chrysene and dibenz[a,h]anthracene (Table I), can be related to the formation of bay-region diol epoxides catalyzed by monooxygenase enzymes (j>). However, the most potent carcinogenic PAH have IP < ca. 7.35 eV. [Pg.296]

Chrysene, dimethyl- Chrysene, 1-methyl-Chrysene, 2-methyl-Chrysene, 3-methyl-Chrysene, 4-methyl-Chrysene, 5-methyl-Chrysene, 6-methyl-Coronene... [Pg.105]

Zone refining purified naphthalene from anthracene, 2,4-dinitrophenylhydrazine, methyl violet, benzoic acid, methyl red, chrysene, pentacene and indoline. [Pg.304]

Benzo[c]phenanthridine alkaloids are widespread in Papaveraceae, Fumariaceae, and Rutaceae. Fagaridine (118), the structure of which had to be revised, is a derivative of the unknown 5-methyl-benzo[c]phenan-thridine-8-olate (119) which is isoconjugate with the 2-methyl-chrysene anion (Scheme 43). Thus, Fagaridine is a member of class 1 of conjugated heterocyclic mesomeric betaines, which are isoconjugate with odd alternant hydrocarbon anions. [Pg.107]

Die Hydrodimerisierung von l,2-Bis-[2-methoxycarbonyl-vinyl]-benzol fiihrt unter Cyclisierung zum 6,12-Bis- [methoxycarbonyl-methyl]-5, t I-dimethoxycarbonyl-4b,5,6,1 Ob, 11,12-hexahydro-chrysen (29% d. Th. F 157-157,5°) neben einem Tetralin- und cincm Hexandisaure-dimelhylester-Derivat (2 0,5 0,5)2 ... [Pg.644]

CHROMIUM TRIOXIDE-PYRIDINE COMPLEX, preparation in situ, 55, 84 Chrysene, 58,15, 16 fzans-Cinnamaldehyde, 57, 85 Cinnamaldehyde dimethylacetal, 57, 84 Cinnamyl alcohol, 56,105 58, 9 2-Cinnamylthio-2-thiazoline, 56, 82 Citric acid, 58,43 Citronellal, 58, 107, 112 Cleavage of methyl ethers with iodotri-methylsilane, 59, 35 Cobalt(II) acetylacetonate, 57, 13 Conjugate addition of aryl aldehydes, 59, 53 Copper (I) bromide, 58, 52, 54, 56 59,123 COPPER CATALYZED ARYLATION OF /3-DlCARBONYL COMPOUNDS, 58, 52 Copper (I) chloride, 57, 34 Copper (II) chloride, 56, 10 Copper(I) iodide, 55, 105, 123, 124 Copper(I) oxide, 59, 206 Copper(ll) oxide, 56, 10 Copper salts of carboxylic acids, 59, 127 Copper(l) thiophenoxide, 55, 123 59, 210 Copper(l) trifluoromethanesulfonate, 59, 202... [Pg.114]

Hemoglobin is another heme-containing protein, which has been shown to be active towards PAH, oxidation in presence of peroxide [420], This protein was also modified via PEG and methyl esterification to obtain a more hydrophobic protein with altered activity and substrate specificity. The modified protein had four times the catalytic efficiency than that of the unmodified protein for pyrene oxidation. Several PAHs were also oxidized including acenaphthene, anthracene, azulene, benzo(a)pyrene, fluoranthene, fluorene, and phenanthrene however, no reaction was observed with chrysene and biphenyl. Modification of hemoglobin with p-nitrophenol and p-aminophenol has also been reported [425], The modification was reported to enhance the substrate affinity up to 30 times. Additionally, the solvent concentration at which the enzyme showed maximum activity was also higher. Both the effects were attributed to the increase in hydrophobicity of the active site. [Pg.197]

The configuration of the 4R,5R-dihydrodiol was established by application of the exciton chirality method (6). To minimize undesired interactions between the electric transition dipoles of the two j>-N,N-dimethylaminobenzoate chromophores and the dihydrodiol chromo-phore, a 4,5-dihydrodiol enantiomer was first reduced to 1,2,3,3a,4,5,7,8,9,10-decahydro and 4,5,7,8,9,10,11,12-octahydro derivatives (6). We found that it is not necessary to reduce the chrysene chromophore of a BaP 4,5-dihydrodiol enantiomer (Figure 2). Similarly, the absolute configurations of the K-region dihydrodiol enantiomers of BA (7), 7-bromo-BA (8), 7-fluoro-BA (9), 7-methyl-BA (10). and 7,12-dime thy 1-BA (DMBA) (7 ) can also be determined by the exciton chirality method without further reduction. [Pg.27]

Methods for the synthesis of the biologically active dihydrodiol and diol epoxide metabolites of both carcinogenic and noncarcinogenic polycyclic aromatic hydrocarbons are reviewed. Four general synthetic routes to the trans-dihydrodiol precursors of the bay region anti and syn diol epoxide derivatives have been developed. Syntheses of the oxidized metabolites of the following hydrocarbons via these methods are described benzo(a)pyrene, benz(a)anthracene, benzo-(e)pyrene, dibenz(a,h)anthracene, triphenylene, phen-anthrene, anthracene, chrysene, benzo(c)phenanthrene, dibenzo(a,i)pyrene, dibenzo(a,h)pyrene, 7-methyl-benz(a)anthracene, 7,12-dimethylbenz(a)anthracene, 3-methylcholanthrene, 5-methylchrysene, fluoranthene, benzo(b)fluoranthene, benzo(j)fluoranthene, benzo(k)-fluoranthene, and dibenzo(a,e)fluoranthene. [Pg.41]

Whereas peri methyl substitution does not block dihydrodiol formation in the adjacent ring in the benz[a]anthracene system (38,39), it apparently does so in the chrysene system. 7,8-Dihydro-... [Pg.105]

Figure 4. Views of DMBA, BP, 5,6-dimethylchrysene, 5,12-dimethyl-chrysene and 5-methyl chrysene. These illustrate the distortions that occur as a result of steric effects. These and many subsequent representations of molecular structure are stereoviews and may be viewed with stereoglasses alternatively the reader can focus his eyes on the two images until an image between them begins to form and then allow his eyes to relax until the central image becomes three-dimensional. This process calls for patience and may take a minute or so. The reader who does not wish to do this may simply inspect one of the two diagrams for each structure. Figure 4. Views of DMBA, BP, 5,6-dimethylchrysene, 5,12-dimethyl-chrysene and 5-methyl chrysene. These illustrate the distortions that occur as a result of steric effects. These and many subsequent representations of molecular structure are stereoviews and may be viewed with stereoglasses alternatively the reader can focus his eyes on the two images until an image between them begins to form and then allow his eyes to relax until the central image becomes three-dimensional. This process calls for patience and may take a minute or so. The reader who does not wish to do this may simply inspect one of the two diagrams for each structure.
AI3-00040, see Cyclohexanol AI3-00041, see Cyclohexanone AI3-00045, see Diacetone alcohol AI3-00046, see Isophorone AI3-00050, see 1,4-Dichlorobenzene AI3-00052, see Trichloroethylene AI3-00053, see 1,2-Dichlorobenzene AI3-00054, see Acrylonitrile AI3-00072, see Hydroquinone AI3-00075, see p-Chloro-rrr-cresol AI3-00078, see 2,4-Dichlorophenol AI3-00085, see 1-Naphthylamine AI3-00100, see Nitroethane AI3-00105, see Anthracene AI3-00109, see 2-Nitropropane AI3-00111, see Nitromethane AI3-00118, see ferf-Butylbenzene AI3-00119, see Butylbenzene AI3-00121, see sec-Butylbenzene AI3-00124, see 4-Aminobiphenyl AI3-00128, see Acenaphthene AI3-00134, see Pentachlorophenol AI3-00137, see 2-Methylphenol AI3-00140, see Benzidine AI3-00142, see 2,4,6-Trichlorophenol AI3-00150, see 4-Methylphenol AI3-00154, see 4,6-Dinitro-o-cresol AI3-00262, see Dimethyl phthalate AI3-00278, see Naphthalene AI3-00283, see Di-rj-butyl phthalate AI3-00327, see Acetonitrile AI3-00329, see Diethyl phthalate AI3-00399, see Tributyl phosphate AI3-00404, see Ethyl acetate AI3-00405, see 1-Butanol AI3-00406, see Butyl acetate AI3-00407, see Ethyl formate AI3-00408, see Methyl formate AI3-00409, see Methanol AI3-00520, see Tri-ocresyl phosphate AI3-00576, see Isoamyl acetate AI3-00633, see Hexachloroethane AI3-00635, see 4-Nitrobiphenyl AI3-00698, see IV-Nitrosodiphenylamine AI3-00710, see p-Phenylenediamine AI3-00749, see Phenyl ether AI3-00790, see Phenanthrene AI3-00808, see Benzene AI3-00867, see Chrysene AI3-00987, see Thiram AI3-01021, see 4-Chlorophenyl phenyl ether AI3-01055, see 1.4-Dioxane AI3-01171, see Furfuryl alcohol AI3-01229, see 4-Methyl-2-pentanone AI3-01230, see 2-Heptanone AI3-01231, see Morpholine AI3-01236, see 2-Ethoxyethanol AI3-01238, see Acetone AI3-01239, see Nitrobenzene AI3-01240, see I idine AI3-01256, see Decahydronaphthalene AI3-01288, see ferf-Butyl alcohol AI3-01445, see Bis(2-chloroethoxy)methane AI3-01501, see 2,4-Toluene diisocyanate AI3-01506, see p,p -DDT AI3-01535, see 2,4-Dinitrophenol AI3-01537, see 2-Chloronaphthalene... [Pg.1457]

GC-MS examination of the PAH fraction of sample S2 (S2-C2) gave very similar results the total ion chromatogram is shown in Figure 5. Major constituents were phenanthrene, fluoranthene, pyrene, and methyl, dimethyl/ethylphenanthrene/anthracene. Relative abundance of some C2-alkylphenanthrenes/anthracenes were higher in this sample than in S1-C2. Smaller quantities of benzo[ghi]fluoranthene, chrysene, benzo[ajanthracene, tripheny-lene, benzo[b,j, k]fluoranthenes, and benzo[e aJpyrenes and were characterized by MS. In addition, most compounds listed in Table 1 were also detected in this sample. [Pg.367]


See other pages where Chrysene 5-methyl is mentioned: [Pg.306]    [Pg.1003]    [Pg.1049]    [Pg.1174]    [Pg.1221]    [Pg.1550]    [Pg.1829]    [Pg.73]    [Pg.81]    [Pg.85]    [Pg.91]    [Pg.1550]    [Pg.1585]    [Pg.1643]    [Pg.344]    [Pg.663]    [Pg.321]    [Pg.412]    [Pg.37]    [Pg.58]    [Pg.59]    [Pg.92]    [Pg.94]    [Pg.140]    [Pg.140]    [Pg.205]    [Pg.297]    [Pg.305]    [Pg.306]    [Pg.306]    [Pg.155]    [Pg.1375]    [Pg.628]    [Pg.112]    [Pg.1507]    [Pg.217]    [Pg.156]    [Pg.498]    [Pg.1375]    [Pg.344]    [Pg.181]    [Pg.385]    [Pg.280]    [Pg.229]   
See also in sourсe #XX -- [ Pg.401 ]




SEARCH



Chrysen

Chrysenes

© 2024 chempedia.info