Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromium oxide-sulfuric acid

No systematic study of the minimal required amount of lead tetraacetate has been made. In cases where the product of the hypoiodite reaction is an iodo ether (20-hydroxy steroids) the reaction can be interrupted at the iodohydrin stage by reducing the amount of iodine to about 0.5 mole. For the oxidation of iodo ethers to lactones, chromium trioxide-sulfuric acid in acetone has been used. Silver chromate is often added to the reaction mixture but comparable yields are obtained without the addition of silver salt. [Pg.250]

The theoretical amount of sulfurous acid required to reduce a given amount of chromium can be calculated from the above equation. The actual amount of sulfurous acid required to treat a wastewater will be greater than this because other compounds and ions present in the wastewater may consume some of the acid. Primary among these is dissolved oxygen, which oxidizes sulfurous acid to sulfuric acid according to the following reaction ... [Pg.241]

Preparation. The reagent has been prepared by oxidation of the corresponding carbinol with chromium trioxide (sulfuric acid).1... [Pg.22]

Chromium trioxide/sulfuric acid Oxidative N-debenzylation s. 18, 25 CrOsIH SO NGHgGeHs -> NH... [Pg.406]

The essence of the purification method used in the production of diamond nanopowders is to dissolve impurities of metals and their compounds and oxidize nondiamond forms of carbon by chromic anhydride in the presence of sulfuric acid. The use of such a strong oxidant in the presence of a strong acid makes it possible to combine in one stage the purification of diamonds both from nondiamond carbon forms and from metal impurities. The suspension of the nanodiamond-containing mixture is filtered through a set of sieves to remove mechanical impurities, the metal part is removed by magnetic treatment, and the solid phase is concentrated by nutsch filters. Dissolution of impurities of metals and their compounds and oxidation of nondiamond forms of carbon is carried out in a reactor (further on, this operation is called oxidation ). One run of oxidation to purify 3.3-3.7-kg solid phase of the mixture requires 24-27-kg sulfuric acid and 6.9-7.5-kg chromic anhydride. In the oxidation, when a solution of chromic anhydride is added, the temperature in the reactor reaches 125-130°C the mixture is kept in the reactor with sulfuric acid and chromic anhydride for 3-4 h. Following the oxidation, the reaction mixture is washed with water to remove chromium and sulfuric-acid salts. The yield is a nanodiamond suspension that contains 2.3-2.5-kg solid phase. [Pg.31]

Make acid yields coumaUc acid when treated with fuming sulfuric acid (19). Similar treatment of malic acid in the presence of phenol and substituted phenols is a facile method of synthesi2ing coumarins that are substituted in the aromatic nucleus (20,21) (see Coumarin). Similar reactions take place with thiophenol and substituted thiophenols, yielding, among other compounds, a red dye (22) (see Dyes and dye intermediates). Oxidation of an aqueous solution of malic acid with hydrogen peroxide (qv) cataly2ed by ferrous ions yields oxalacetic acid (23). If this oxidation is performed in the presence of chromium, ferric, or titanium ions, or mixtures of these, the product is tartaric acid (24). Chlorals react with malic acid in the presence of sulfuric acid or other acidic catalysts to produce 4-ketodioxolones (25,26). [Pg.522]

Copper and Copper-Containing Alloys. Either sulfuric or hydrochloric acid may be used effectively to remove the oxide film on copper (qv) or copper-containing alloys. Mixtures of chromic and sulfuric acids not only remove oxides, but also brighten the metal surface. However, health and safety issues related to chromium(VT) make chromic acid less than desirable. [Pg.226]

In past years, metals in dilute sulfuric acid were used to produce the nascent hydrogen reductant (42). Today, the reducing agent is hydrogen in the presence of a catalyst. Nickel, preferably Raney nickel (34), chromium or molybdenum promoted nickel (43), or supported precious metals such as platinum or palladium (35,44) on activated carbon, or the oxides of these metals (36,45), are used as catalysts. Other catalysts have been suggested such as molybdenum and platinum sulfide (46,47), or a platinum—nithenium mixture (48). [Pg.311]

Titanium Sulfates. Solutions of titanous sulfate [10343-61-0] ate readily made by reduction of titanium(IV) sulfate ia sulfuric acid solutioa by electrolytic or chemical means, eg, by reduction with ziac, ziac amalgam, or chromium (IT) chloride. The reaction is the basis of the most used titrimetric procedure for the determination of titanium. Titanous sulfate solutions are violet and, unless protected, can slowly oxidize ia coatact with the atmosphere. If all the titanium has been reduced to the trivalent form and the solution is then evaporated, crystals of an acid sulfate 3 Ti2(S0 2 [10343-61-0] ate produced. This purple salt, stable ia air at aormal temperatures, dissolves ia water to give a stable violet solutioa. Whea heated ia air, it decomposes to Ti02, water, sulfuric acid, and sulfur dioxide. [Pg.133]

Again, as with pyridopyrimidines, the main reaction is oxidation of di- or poly-hydro derivatives to fully aromatic structures, often merely by air or oxygen. In some cases the reagent of choice is mercury(II) oxide, whilst other reagents used include sulfur, bromine, chloranil, chromium trioxide-acetic acid, hydrogen peroxide, and potassium ferricyanide, which also caused oxidative removal of a benzyl group in the transformation (306) (307)... [Pg.237]

A similar procedure may be used for the preparation of /)-cyanobenzaldiacetate from -tolunitrile. Information submitted by Rorig and Nicholson, of G. D. Searle and Company, indicates that the critical step in this preparation is to maintain the reaction temperature below 10° throughout the process. Exposure of -cyanobenzaldiacetate to excess chromic, acetic, and sulfuric acids causes a reduction in yield. During the oxidation care should be taken to prevent chromium trioxide from adhering to the walls of the flask above the reaction mixture and then dropping in large amounts into the solution. [Pg.59]

The composition of this alloy (54% nickel, 15% molybdenum, 15% chromium, 5% tungsten and 5% iron) is less susceptible to intergranular corrosion at welds. The presence of chromium in this alloy gives it better resistance to oxidizing conditions than the nickel/molybdenum alloy, particularly for durability in wet chlorine and concentrated hypochlorite solutions, and has many applications in chlorination processes. In cases in which hydrochloric and sulfuric acid solutions contain oxidizing agents such as ferric and cupric ions, it is better to use the nickel/molybdenum/ chromium alloy than the nickel/molybdenum alloy. [Pg.75]

When a solution of chromic and sulfuric acids in water is added at 0-20° to an alcohol or formate dissolved in acetone, a rapid oxidation takes place with the separation of the green chromium III reduction product as a separate layer. This system is commonly known as Jones reagent. The rate of oxidation is so fast that it is often possible to run the reaction as a titration to an... [Pg.228]

Snatzke has found that a solution prepared from chromium trioxide and dimethylformamide with a small amount of sulfuric acid has similar chemical properties as the Sarett reagent. It is useful with acid sensitive compounds and oxidation occurs at such a moderate rate that selective oxidations are often possible. Although the position allylic to a A -double bond is not attacked, the 3-hydroxy-A -system cannot be oxidized satisfactorily to the cor-... [Pg.231]

The immediate outcome of the Hantzsch synthesis is the dihydropyridine which requires a subsequent oxidation step to generate the pyridine core. Classically, this has been accomplished with nitric acid. Alternative reagents include oxygen, sodium nitrite, ferric nitrate/cupric nitrate, bromine/sodium acetate, chromium trioxide, sulfur, potassium permanganate, chloranil, DDQ, Pd/C and DBU. More recently, ceric ammonium nitrate (CAN) has been found to be an efficient reagent to carry out this transformation. When 100 was treated with 2 equivalents of CAN in aqueous acetone, the reaction to 101 was complete in 10 minutes at room temperature and in excellent yield. [Pg.317]

The chromic acid oxidizing reagent is prepared by dissolving 13.4 g of chromium trioxide in 25 ml of water. To this solution is added 12 ml of concentrated sulfuric acid. An additional minimum quantity of water is added if necessary to dissolve any precipitated salts. [Pg.3]

Chlorinating the aqueous waste sludge suspension (to oxidize the chromium) at temperatures of 20 to 80°C and pH values between 4 and 13. The chlorinated sludge is then acidified with sulfuric acid to a pH of 1.0 to 3.0. The insoluble components are then separated, followed by the separation of the chromium(VI) from the solution using a fixed-bed anion exchanger (at pH values of <3). [Pg.148]

Oxidation of that compound with chromium trioxide in sulfuric acid leads cleanly to the desired ketone (67). Treatment with hydrobromic acid serves to demethylate the phenolic ether function (68). Direct... [Pg.327]

Hydroxylamine is a powerful reducant, particularly when anhydrous, and if exposed to air on a fibrous extended surface (filter paper) it rapidly heats by aerobic oxidation. It explodes in contact with air above 70°C [1]. Barium peroxide will ignite aqueous hydroxylamine, while the solid ignites in dry contact with barium oxide, barium peroxide, lead dioxide and potassium permanganate, but with chlorates, bromates and perchlorates only when moistened with sulfuric acid. Contact of the anhydrous base with potassium dichromate or sodium dichromate is violently explosive, but less so with ammonium dichromate or chromium trioxide. Ignition occurs in gaseous chlorine, and vigorous oxidation occurs with hypochlorites. [Pg.1664]

Chromic acid is usually prepared by adding chromium(VI) oxide (CrCb) or sodium dichromate (Na2Cr207) to aqueous sulfuric acid. [Pg.472]


See other pages where Chromium oxide-sulfuric acid is mentioned: [Pg.72]    [Pg.187]    [Pg.111]    [Pg.131]    [Pg.361]    [Pg.421]    [Pg.565]    [Pg.68]    [Pg.117]    [Pg.126]    [Pg.57]    [Pg.969]    [Pg.228]    [Pg.272]    [Pg.741]    [Pg.71]    [Pg.102]    [Pg.99]    [Pg.202]    [Pg.223]    [Pg.32]    [Pg.64]    [Pg.930]    [Pg.1319]    [Pg.105]    [Pg.1481]    [Pg.1735]   
See also in sourсe #XX -- [ Pg.102 ]




SEARCH



Chromium acid

Chromium oxidants

Chromium oxide

Chromium oxids

Oxides chromium oxide

Sulfur oxide

Sulfur oxide acidity

Sulfur oxides oxidation

Sulfur oxidized

Sulfur oxidizer

Sulfurous acid, oxidation

Sulfurous oxide

© 2024 chempedia.info