Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromatography probe-process

HPLC as a purification technique and as a tool for process monitoring has become increasingly attractive and will find many new applications in the future. Low pressure LC, probe LC, and micro-LC are techniques important to the future of process chromatography. Specialized detectors and multidimensional chromatographic approaches are also of increasing use. Additional literature is available.22 33-36... [Pg.94]

Reversed-phase liquid chromatography shape-recognition processes are distinctly limited to describe the enhanced separation of geometric isomers or structurally related compounds that result primarily from the differences between molecular shapes rather than from additional interactions within the stationary-phase and/or silica support. For example, residual silanol activity of the base silica on nonend-capped polymeric Cis phases was found to enhance the separation of the polar carotenoids lutein and zeaxanthin [29]. In contrast, the separations of both the nonpolar carotenoid probes (a- and P-carotene and lycopene) and the SRM 869 column test mixture on endcapped and nonendcapped polymeric Cig phases exhibited no appreciable difference in retention. The nonpolar probes are subject to shape-selective interactions with the alkyl component of the stationary-phase (irrespective of endcapping), whereas the polar carotenoids containing hydroxyl moieties are subject to an additional level of retentive interactions via H-bonding with the surface silanols. Therefore, a direct comparison between the retention behavior of nonpolar and polar carotenoid solutes of similar shape and size that vary by the addition of polar substituents (e.g., dl-trans P-carotene vs. dll-trans P-cryptoxanthin) may not always be appropriate in the context of shape selectivity. [Pg.244]

Internal reflection spectroscopy is widely applied for on-line process control. In this type of application, the chemical reactor is equipped with an internal reflection probe or an IRE. The goal of this type of application is the quantification of reactant and/or product concentrations to provide real-time information about the conversion within the reactor. In comparison with other analytical methods such as gas chromatography, high-pressure liquid chromatography, mass spectrometry, and NMR spectroscopy, ATR spectroscopy is considerably faster and does not require withdrawal of sample, which can be detrimental for monitoring of labile compounds and for some other applications. [Pg.242]

Dialysis is the process in which small molecules diffuse across a semipermeable membrane that has pore sizes large enough to pass small molecules but not large ones. A microdialysis probe has a semipermeable membrane attached to the shaft of a hypodermic needle, which can be inserted into an animal. Fluid is pumped through the probe from the inlet to the outlet. Small molecules from the animal diffuse into the probe and are rapidly transported to the outlet. Fluid exiting the probe (dialysate) can be analyzed by liquid chromatography. [Pg.556]

Platinum porphyrin complexes can be prepared by reaction with PtCl2(PhCN)2. Purification of the final complex is by medium pressure liquid chromatography on alumina. The strongly phosphorescent platinum(II) porphyrin complexes are efficient sensitizers for stilbene isomerization. The quantum yields for the cis to trans process are greater than unity because of a quantum chain process in which the metalloporphyrin serves both as an energy donor and an acceptor.1110 Picosecond laser spectroscopy has been used to obtain time-resolved excited-state spectra of platinum octaethylporphyrin complexes, and to probe the excited-state energy levels.1111 Tetrabenzoporphyrin complexes have been prepared for platinum in both the divalent and tetravalent oxidation states. The divalent complex shows strong phosphorescence at 745 nm.1112... [Pg.434]

The use of inverse gas chromatography (IGC) to study the properties of polymers has greatly increased in recent years (1,2). The shape and position of the elution peak contain information about all processes that occur in the column diffusion of the probe in the gas and the polymer phases, partitioning between phases, and adsorption on the surface of the polymer and the support. Traditional IGC experiments aim at obtaining symmetrical peaks, which can be analyzed using the van Deemter (3j or moments method (4). However, the behavior of the polymer-probe system is also reflected in the asymmetry of the peak and its tail. A method that could be used to analyze a peak of any shape, allowing elucidation of all the processes on the column, would be of great use. [Pg.33]


See other pages where Chromatography probe-process is mentioned: [Pg.91]    [Pg.429]    [Pg.125]    [Pg.23]    [Pg.335]    [Pg.380]    [Pg.72]    [Pg.78]    [Pg.111]    [Pg.438]    [Pg.288]    [Pg.2]    [Pg.304]    [Pg.218]    [Pg.879]    [Pg.146]    [Pg.257]    [Pg.297]    [Pg.137]    [Pg.150]    [Pg.20]    [Pg.25]    [Pg.96]    [Pg.160]    [Pg.159]    [Pg.223]    [Pg.380]    [Pg.119]    [Pg.55]    [Pg.33]    [Pg.1103]    [Pg.194]    [Pg.2]    [Pg.428]    [Pg.120]    [Pg.1242]    [Pg.720]    [Pg.2]    [Pg.371]    [Pg.21]    [Pg.338]    [Pg.89]    [Pg.330]    [Pg.1388]   
See also in sourсe #XX -- [ Pg.91 ]




SEARCH



Process chromatography

© 2024 chempedia.info