Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromatographic separation chromatography

Manufacturing approaches for selected bioproducts of the new biotechnology impact product recovery and purification. The most prevalent bioseparations method is chromatography (qv). Thus the practical tools used to initiate scaleup of process Hquid chromatographic separations starting from a minimum amount of laboratory data are given. [Pg.42]

Development of the Chromatogram. The term development describes the process of performing a chromatographic separation. There are several ways in which separation may be made to occur, eg, frontal, displacement, and elution chromatography. Frontal chromatography uses a large quantity of sample and is usually unsuited to analytical procedures. In displacement and elution chromatography, much smaller amounts of material are used. [Pg.105]

Oils are mixtures of mixed esters with different fatty acids distributed among the ester molecules. Generally, identification of specific esters is not attempted instead the oils are characterized by analysis of the fatty acid composition (8,9). The principal methods have been gas—Hquid and high performance Hquid chromatographic separation of the methyl esters of the fatty acids obtained by transesterification of the oils. Mass spectrometry and nmr are used to identify the individual esters. It has been reported that the free fatty acids obtained by hydrolysis can be separated with equal accuracy by high performance Hquid chromatography (10). A review of the identification and deterrnination of the various mixed triglycerides is available (11). [Pg.260]

An important publication by Kost et al. (63JGU525) on thin-layer chromatography (TLC) of pyrazoles contains a large collection of Rf values for 1 1 mixtures of petroleum ether-chloroform or benzene-chloroform as eluents and alumina as stationary phase. 1,3- and 1,5-disubstituted pyrazoles can be separated and identified by TLC (Rf l,3>i y 1,5). For another publication by the same authors on the chromatographic separation of the aminopyrazoles, see (63JGU2519). A-Unsubstituted pyrazoles move with difficulty and it is necessary to add acetone or methanol to the eluent mixture. Other convenient conditions for AH pyrazoles utilize silica gel and ethyl acetate saturated with water (a pentacyanoamine ferroate ammonium disodium salt solution can be used to visualize the pyrazoles). [Pg.207]

Ligand exchange Equihbrium Chromatographic separation of glucose-fructose mixtures with Ca-form resins Removal of hea y metals with chelating resins Affinity chromatography... [Pg.1497]

Selectivity of chromatographic separation is known to be varied by changing both the nonstationary phase composition and adsorbent nature. It is shown that the less are the values of the reached selectivity coefficient the higher are the requirements to column effectiveness. In this connection the choice of stationai y phase with high and predicted selectivity coefficient for the compounds being separated is still remains a topical problem of high-performance liquid chromatography. [Pg.138]

New stationary phases for specific purposes in chromatographic separation are being continually proposed. Charge transfer adsorption chromatography makes use of a stationary phase which contains immobilised aromatic compounds and permits the separation of aromatic compounds by virtue of the ability to form charge transfer complexes (sometimes coloured) with the stationary phase. The separation is caused by the differences in stability of these complexes (Porath and Dahlgren-Caldwell J Chromatogr 133 180 1977). [Pg.25]

A chromatographic separation can be developed in three ways, by displacement development, by frontal analysis, and by elution development, the last being almost universally used in all analytical chromatography. Nevertheless, for the sake of completeness, and because in preparative chromatography (under certain conditions of mass overload) displacement effects occur to varying extents, all three development processes will be described. [Pg.7]

Elution development is by far the most common method of processing a chromatographic separation and is used in all types of chromatography. Elution development is best described as a series of absorption-extraction processes which are continuous from the time the sample is injected into the distribution system until the time the solutes exit from it. The elution process is depicted in Figure 1. [Pg.9]

In a chromatographic separation, the individual components of a mixture are moved apart in the column due to their different affinities for the stationary phase and, as their dispersion is contained by appropriate system design, the individual solutes can be eluted discretely and resolution is achieved. Chromatography theory has been developed over the last half century, but the two critical theories, the Plate Theory and the Rate Theory, were both well established by 1960. There have been many contributors to chromatography theory over the intervening years but, with the... [Pg.16]

There is no other facet where thin-layer chromatography reveals its paper-chromatographic ancestry more clearly than in the question of development chambers (Fig. 56). Scaled-down paper-chromatographic chambers are still used for development to this day. From the beginning these possessed a vapor space, to allow an equilibration of the whole system for partition-chromatographic separations. The organic mobile phase was placed in the upper trough after the internal space of the chamber and, hence, the paper had been saturated, via the vapor phase, with the hydrophilic lower phase on the base of the chamber. [Pg.124]

The samples were applied to the concentrating zone as bands in the direction of chromatography. The zones were concentrated by brief development in the mobile phase described below almost to the junction between the concentrating zone and the chromatographic layer, followed by drying for 5 min in a stream of warm air. The actual chromatographic separation was then carried out. [Pg.168]

Indeed, great emphasis was placed on the presentation of compounds in crystalline form for many years, early chromatographic procedures for the separation of natural substances were criticized because the products were not crystalline. None the less, the invention by Tswett (3) of chromatographic separation by continuous adsorption/desorption on open columns as applied to plant extracts was taken up by a number of natural product researchers in the 1930s, notably by Karrer (4) and by Swab and lockers (5). An early example (6) of hyphenation was the use of fluorescence spectroscopy to identify benzo[a]pyrene separated from shale oil by adsorption chromatography on alumina. [Pg.3]

The great leap forward for chromatography was the seminal work of Martin and Synge (7) who in 1941 replaced countercurrent liquid-liquid extraction by partition chromatography for the analysis of amino acids from wool. Martin also realized that the mobile phase could be a gas rather than a liquid, and with James first developed (8) gas chromatography (GC) in 1951, following the gas-phase adsorption-chromatographic separations of Phillips (9). [Pg.3]

A theoretical model whereby maximum peak capacity could be achieved by the use of 3-D planar chromatographic separation was proposed by Guiochon and coworkers (23-27). Unfortunately, until now, because of technical problems, this idea could not be realized in practice. Very recently, however, a special stationary phase, namely Empore silica TLC sheets, has now become available for realization of 3-D PC. This stationary phase, developed as a new separation medium for planar chromatography, contains silica entrapped in an inert matrix of polytetrafluoroethy-lene (PTFE) microfibrils. It has been established that the separating power is only ca. 60% of that of conventional TLC (28) this has been attributed to the very slow solvent migration velocity resulting from capillary action. [Pg.184]


See other pages where Chromatographic separation chromatography is mentioned: [Pg.30]    [Pg.215]    [Pg.546]    [Pg.610]    [Pg.610]    [Pg.43]    [Pg.5]    [Pg.388]    [Pg.539]    [Pg.276]    [Pg.272]    [Pg.200]    [Pg.226]    [Pg.33]    [Pg.104]    [Pg.106]    [Pg.116]    [Pg.1530]    [Pg.1531]    [Pg.1534]    [Pg.1554]    [Pg.446]    [Pg.501]    [Pg.3]    [Pg.3]    [Pg.4]    [Pg.21]    [Pg.480]    [Pg.1031]    [Pg.1032]    [Pg.19]    [Pg.460]    [Pg.265]    [Pg.76]    [Pg.77]   
See also in sourсe #XX -- [ Pg.257 ]




SEARCH



Chromatographic separation high performance liquid chromatography

Chromatographic separation open column chromatography

Chromatographic separation open column, thin layer chromatography

Chromatographic separation techniques liquid column chromatography

Chromatographic separation thin layer chromatography

Chromatographic separation, modes affinity chromatography

Chromatographic separation, modes exclusion chromatography

Chromatographic separation, modes normal phase chromatography

Chromatographic separation, modes reversed phase chromatography

Chromatography separation

Displacement chromatography chromatographic separation

High performance liquid chromatography carotenoid chromatographic separation

Thin layer chromatography carotenoid chromatographic separation

© 2024 chempedia.info